Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Breakthrough in Nanosized Contrast Agents to Enhance Magnetic Resonance Imaging

By MedImaging International staff writers
Posted on 06 Dec 2023

Magnetic resonance imaging (MRI) plays a vital role in cancer diagnosis by capturing detailed images of soft tissues. For enhanced tumor visibility in MRI scans, doctors often administer contrast agents to patients. These agents impact the response of surrounding hydrogen ions to MRI's radiofrequency pulses. The aim of using contrast agents is to have them specifically accumulate in tumors, thereby heightening their visibility in the scans. However, traditional gadolinium (Gd)-chelate contrast agents have nearly reached their performance peak. One of the main challenges is achieving an optimal dose in the distribution of Gd-chelate in tumors, healthy tissue, and blood without excessive Gd doses.

In response, a collaborative study by a research team that included scientists from Tokyo Institute of Technology (Tokyo, Japan) has led to the development of a groundbreaking nano-contrast agent (NCA) using an innovative molecular design. This NCA utilizes Gd as the contrast agent within a "self-folding macromolecular drug carrier (SMDC)." The team integrated clinically approved Gd-containing chelates into a polymer chain comprising poly(ethylene glycol) methyl ether acrylate (PEGA) and benzyl acrylate (BZA). This polymer, featuring both hydrophilic and hydrophobic sections, spontaneously forms a small, capsule-like structure in water, positioning the hydrophobic segments internally and the hydrophilic ones externally.

This methodology allowed for the production of SMDC-Gds molecules under 10 nanometers in size. Experiments on mice with colon cancer demonstrated that these NCAs accumulated more effectively in tumors and were rapidly cleared from the bloodstream, thus enhancing MRI capabilities without toxic side effects. Furthermore, the team uncovered an additional benefit of SMDC-Gds over existing Gd-chelates. The optimal performance of Gd ions is achieved when their movement is restricted, ensuring a consistent and prolonged impact on neighboring hydrogen ions. The SMDC's core/shell structure creates a densely packed molecular environment that limits the rotation and internal motions of Gd ions, thereby resulting in a stronger contrast in MRI images. This will enable the use of alternative elements with safer profiles in patients as well as the environment in the future.

Beyond MRI applications, SMDC-Gds show promise in neutron capture therapy (NCT), an emerging targeted radiotherapy method. In NCT, Gds capture neutrons and emit high-energy radiation, destroying cancer cells in proximity. Experiments showed that NCT with repeated SMDC-Gd injections significantly reduced tumor growth, which can be attributed to the selective accumulation and deep penetration of SMDC-Gds in tumor tissues. The research highlights the potential of SMDCs not just for improved MRI diagnostics, but also as effective cancer treatment modalities and other medical applications.

"This study presents further possibilities for exploiting drug delivery using various therapeutic cargos, and we are currently investigating the development of such SMDC systems," said Associate Professor Yutaka Miura of Tokyo Tech who led the research team.

Related Links:
Tokyo Institute of Technology

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Digital Radiography Generator
meX+20BT lite
Color Doppler Ultrasound System
DRE Crystal 4PX
New
Compact C-Arm
Arcovis DRF-C S21
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Whole-body maximum-intensity projections over time after [68Ga]Ga-DPI-4452 administration (Photo courtesy of SNMMI)

New PET Agent Rapidly and Accurately Visualizes Lesions in Clear Cell Renal Cell Carcinoma Patients

Clear cell renal cell cancer (ccRCC) represents 70-80% of renal cell carcinoma cases. While localized disease can be effectively treated with surgery and ablative therapies, one-third of patients either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.