We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




4D MRI Could Improve Clinical Assessment of Heart Blood Flow Abnormalities

By MedImaging International staff writers
Posted on 19 Mar 2024
Print article
Image: 4D flow MRI enables unobstructed in-vivo assessment of time-resolved 3D blood velocity (Photo courtesy of Northwestern University)
Image: 4D flow MRI enables unobstructed in-vivo assessment of time-resolved 3D blood velocity (Photo courtesy of Northwestern University)

Magnetic Resonance Imaging (MRI) utilizes magnets and pulsed radio frequency to generate computer images for screening and diagnosing medical conditions. 4D flow MRI, an advanced imaging technique, provides a more detailed view of the heart and the aorta by adding movement as a fourth dimension. This allows healthcare professionals to see how blood moves through the cardiovascular system in detail and identify any potential issues that may require further examination. Previous studies have indicated that evaluating blood stasis and peak velocity in the left atrium and its appendage using 4D flow could aid in identifying impaired blood flow, which increases the risk of forming blood clots. However, the relationship between conventional volumetric and functional left atrium parameters with flow characteristics in the left atrium and left atrium appendage had not been fully investigated until now.

Now, a study by researchers from Northwestern University (Evanston, IL, USA) has discovered that combining whole-heart 4D flow with short-axis cine MRI can identify characteristics linked to poor blood flow in the heart’s left atrial chamber. These insights could enable doctors to more accurately diagnose abnormalities in heart blood flow. The study aimed to explore whether the relation between 4D flow parameters and conventional volumetric-based left atrial assessment could help better identify participants with impaired flow characteristics and improve the understanding of mechanistic relationships between left atrial flow and volumetric parameters. The study involved data from 158 patients all of whom underwent prospective cardiac MRI exams consisting of whole-heart 4D flow and short-axis cine imaging. The analysis of the 4D flow MRI involved manual 3D segmentation of the left atrium and its appendage to measure peak velocity and blood stasis.

The team utilized short-axis cine data to define left atrial contours, extracting 3D–based left atrial volume measures to calculate left atrial emptying fractions [total LA emptying fractions (LAEFtotal), active LA emptying fraction (LAEFactive), and passive LA emptying fraction (LAEFpassive)]. They also measured left atrial stasis, left atrial peak velocity, left atrium appendage stasis, and left atrium appendage peak velocity flow parameters to detect any connection with left atrial volume and left atrial emptying fraction. The researchers found that a one-unit increase in LAEFtotal was related to reduced left atrial stasis (p < 0.001) and higher LAEFactive was related to increased left atrial peak velocity (p < 0.001). They also found that increased minimum left atrial volume was most likely related to impaired left atrial appendage flow and lower left atrial appendage peak velocity.

"Increased absolute and indexed minimum left atrial volume was most closely associated with impaired left atrial flow, which is a known risk factor for left atrial thrombus formation and potentially ischemic stroke," the researchers concluded. "Thus, 3D-based left atrial volume quantification may be a useful surrogate measure for left atrial and left atrial appendage flow abnormalities in future studies."

Related Links:
Northwestern University 

New
Gold Member
X-Ray QA Meter
T3 AD Pro
High-Resolution 3D Imaging Technology
Clarity HD+ Imaging Technology
Radiation Therapy Treatment Software Application
Elekta ONE
Digital Radiography System
meX+20BT

Print article

Channels

Ultrasound

view channel
Image: An example of a conventional ultrasound B-scan showing a suspicious breast lesion (left image) and with the new H-scan analysis showing the possibly malignant mass in color (right image) (Photo courtesy of Jihye Baek)

New Ultrasound Technologies Improve Diagnosis for Cancer, Liver Disease and Other Pathologies

Several diseases, including some cancers, can remain hidden or difficult to detect using traditional medical imaging. However, new technologies developed by researchers may soon enhance ultrasound's effectiveness... Read more

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

General/Advanced Imaging

view channel
Image: The AI tool predicts stroke outcomes after arterial clot removal with 78% accuracy (Photo courtesy of Adobe Stock)

AI Tool Accurately Predicts Stroke Outcomes After Arterial Clot Removal Using CTA Scans

In current stroke treatment protocols, advanced imaging techniques, particularly Computed Tomography Angiography (CTA), play a vital role in determining the management strategy for Large Vessel Occlusion (LVO).... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: SONAS is a portable, battery-powered ultrasound device for non-invasive brain perfusion assessment (Photo courtesy of BURL Concepts)

Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging

Ischemic stroke assessment has long been hampered by the limitations of traditional imaging techniques like CT and MRI. These methods are expensive, not always immediately available in emergency situations,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.