We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

AI Predicts Cardiac Risk and Mortality from Routine Chest CT Scans

By MedImaging International staff writers
Posted on 15 May 2024
Print article
Image: AI is applied to CT scans to automatically segment different heart chambers and quantify arterial plaque (Photo courtesy of Slomka laboratory/Nature Communications)
Image: AI is applied to CT scans to automatically segment different heart chambers and quantify arterial plaque (Photo courtesy of Slomka laboratory/Nature Communications)

Heart disease remains the leading cause of death and is largely preventable, yet many individuals are unaware of their risk until it becomes severe. Early detection through screening can reveal heart issues, identifying individuals who may need further examination or potential intervention. While traditional screening methods often measure blood indicators like cholesterol and triglyceride levels, computed tomography (CT) scans can offer a wealth of real-time data about heart health. However, acquiring detailed, quantitative cardiac images usually requires specialized equipment and dyes, making cardiac CT scans costly and not widely used. On the other hand, routine chest CT scans are commonly performed for various reasons, such as checking for lung infections or cancer. Now, a new study has found that these routine CT scans can potentially be used as a screening tool for heart disease.

A collaborative team at Cedars-Sinai Medical Center (Los Angeles, CA, US) is leveraging artificial intelligence (AI) to analyze standard chest CT scans to predict mortality risks. Their research has pinpointed several cardiac indicators within these scans that correlate with a higher risk of death, laying the groundwork for more effective cardiac screenings. The AI system examines images from thousands of patients to automatically extract prognostic features from routine chest CTs—features originally not targeted by these scans. These indicators are then aggregated and analyzed to predict the likelihood of cardiac-related mortality.

Traditionally, cardiac risk is assessed by radiologists identifying abnormalities in imaging. The innovative AI approach has significantly enhanced risk classification beyond this conventional standard. Integrating this AI technology into existing clinical workflows has proved to be simple and has already been implemented at Cedars-Sinai for research purposes. This AI tool is now used to routinely assess CT scans for cardiac prognostic factors. Radiologists typically focused on cancer detections, might not look for cardiac issues such as arterial calcification or chamber enlargement. The AI can assist them by screening these images in the background, identifying patients who may need further cardiac evaluation and potentially early treatment.

“There is a lot of important information that is hiding in chest CT scans,” explained senior study author Piotr Slomka, Ph.D., a professor at Cedars-Sinai. “By using AI to unearth and analyze key prognostic signals in these scans, we could perform opportunistic cardiac screening and potentially prompt treatments or lifestyle changes, which could ultimately save lives.”

Related Links:
Cedars-Sinai Medical Center

Gold Member
Solid State Kv/Dose Multi-Sensor
Enterprise Imaging & Reporting Solution
Syngo Carbon
CT Phantom
CIRS Model 610 AAPM CT Performance Phantom
Breast Imaging Workstation

Print article


Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.