We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Artificial Intelligence (AI) Program Accurately Predicts Lung Cancer Risk from CT Images

By MedImaging International staff writers
Posted on 16 May 2021
Print article
Illustration
Illustration
An artificial intelligence (AI) program accurately predicts the risk that lung nodules detected on screening CT will become cancerous, according to a study published in the journal Radiology.

In the new study, researchers at the Radboud University Medical Center (Nijmegen, The Netherlands) developed an algorithm for lung nodule assessment using deep learning, an AI application capable of finding certain patterns in imaging data. The researchers trained the algorithm on CT images of more than 16,000 nodules, including 1,249 malignancies, from the National Lung Screening Trial. They validated the algorithm on three large sets of imaging data of nodules from the Danish Lung Cancer Screening Trial.

The deep learning algorithm delivered excellent results, outperforming the established Pan-Canadian Early Detection of Lung Cancer model for lung nodule malignancy risk estimation. It performed comparably to 11 clinicians, including four thoracic radiologists, five radiology residents and two pulmonologists. The researchers plan to continue improving the algorithm by incorporating clinical parameters like age, sex and smoking history. They are also working on a deep learning algorithm that takes multiple CT examinations as input. The current algorithm is highly suitable for analyzing nodules at the initial, or baseline, screening, but for nodules detected at subsequent screenings, growth and appearance in comparison to the previous CT are important. The researchers have developed other algorithms to reliably extract imaging features from the chest CT related to chronic obstructive pulmonary diseases and cardiovascular diseases. They will be investigating how to effectively integrate these imaging features into the current algorithm.

“The algorithm may aid radiologists in accurately estimating the malignancy risk of pulmonary nodules,” said the study’s first author, Kiran Vaidhya Venkadesh, a Ph.D. candidate with the Diagnostic Image Analysis Group at Radboud University Medical Center in Nijmegen, the Netherlands. “This may help in optimizing follow-up recommendations for lung cancer screening participants.”

“As it does not require manual interpretation of nodule imaging characteristics, the proposed algorithm may reduce the substantial interobserver variability in CT interpretation,” said senior author Colin Jacobs, Ph.D., assistant professor in the Department of Medical Imaging at Radboud University Medical Center in Nijmegen. “This may lead to fewer unnecessary diagnostic interventions, lower radiologists’ workload and reduce costs of lung cancer screening.”

Related Links:
Radboud University Medical Center

New
Gold Supplier
IMRT Thorax Phantom
CIRS Model 002LFC
Gold Supplier
128 Slice CT Scanner
Supria 128
X-Ray Flat Panel Detector
VIVIX-S 1751S
New
Bladder Scanner
Z5 Bladder Scanner

Print article
Sun Nuclear -    Mirion

Channels

Radiography

view channel
Image: Radiologists outperformed AI in identifying lung diseases on chest X-ray (Photo courtesy of RSNA)

Radiologists Beat AI in Detecting Common Lung Diseases on Chest X-Rays

Chest X-rays are frequently used for diagnosis, but it takes a lot of training and expertise to read these images correctly. Although the Food and Drug Administration (FDA) has approved some artificial... Read more

Ultrasound

view channel
Image: The new device targets ultrasound waves to precise spots in the brain (Photo courtesy of WUSTL)

Anatomically Precise Ultrasound-Based Technique to Enable Noninvasive Biopsies for Brain Tumors

The blood-brain barrier serves as a protective wall, keeping the brain safe from harmful elements like viruses and toxins in the blood. This makes it challenging for doctors to obtain molecular and genetic... Read more

Nuclear Medicine

view channel
Image: Imaging entire body instead of only the primary cancer site can provide a total estimate of HER2 expression (Photo courtesy of 123RF)

Whole-Body PET/CT Predicts Response to HER2-Targeted Therapy in Metastatic Breast Cancer Patients

Around 20% of women diagnosed with breast cancer show overexpression of human epidermal growth factor receptor 2 (HER2), making it a key therapy target for new as well as recurring cases.... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.