Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

By MedImaging International staff writers
Posted on 27 Mar 2024

Approximately 13% of U. More...

S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American Cancer Society. Mammography screening remains a vital tool for early breast cancer detection, offering the most effective treatment window. Regular mammogram appointments can significantly reduce breast cancer mortality risks. Nonetheless, the challenge remains in accurately predicting which individuals will contract breast cancer solely through screening methods. Mirai, an advanced deep learning algorithm, has been recognized for its ability to predict breast cancer risk, although its decision-making process remains largely unexplained, creating risks of overreliance and misdiagnoses by radiologists. Now, researchers have developed an innovative, interpretable artificial intelligence (AI) model capable of predicting the five-year risk of breast cancer based on the analysis of mammograms.

In the study, researchers at Duke University (Durham, NC, USA) conducted a comparative study utilizing their newly devised deep learning model, dubbed AsymMirai, against Mirai's one to five-year breast cancer risk assessments. AsymMirai inherits its deep learning "front end" from Mirai but incorporates an interpretable module called local bilateral dissimilarity, focusing on the tissue contrast between the left and right breasts. This study analyzed 210,067 mammograms from 81,824 patients from the EMory BrEast imaging Dataset (EMBED) spanning from January 2013 to December 2020, employing both the Mirai and AsymMirai algorithms.

The findings revealed that the simplified deep learning model, AsymMirai, nearly matched the performance of the state-of-the-art Mirai algorithm in predicting breast cancer risk from one to five years. Moreover, this study highlighted the significance of bilateral asymmetry as a vital clinical indicator, suggesting its potential as a novel imaging marker for assessing breast cancer risk. The transparency behind AsymMirai's decision-making process makes it an invaluable tool for radiologists, enhancing the accuracy of breast cancer diagnosis and risk prediction.

"We can, with surprisingly high accuracy, predict whether a woman will develop cancer in the next 1 to 5 years based solely on localized differences between her left and right breast tissue," said the study's lead author, Jon Donnelly, B.S., a Ph.D. student in the Department of Computer Science at Duke University. "This could have public impact because it could, in the not-too-distant future, affect how often women receive mammograms."

Related Links:
Duke University


New
Mobile X-Ray System
K4W
Medical Radiographic X-Ray Machine
TR30N HF
Ultrasonic Pocket Doppler
SD1
X-Ray Illuminator
X-Ray Viewbox Illuminators
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.