We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Could Boost Clinical Adoption of Chest DDR

By MedImaging International staff writers
Posted on 01 Apr 2024
Print article
Image: AI could help chest DDR achieve clinical adoption (Photo courtesy of 123RF)
Image: AI could help chest DDR achieve clinical adoption (Photo courtesy of 123RF)

For diagnosing lung conditions, healthcare professionals typically rely on chest X-rays and pulmonary function tests (PFTs), which provide a snapshot of lung health. However, these traditional methods only offer a limited static assessment. Recent advancements have highlighted chest dynamic digital radiography (DDR) as a valuable tool for observing the lungs and diaphragm in motion, offering insights into respiratory function that static images are not capable of. Despite its potential benefits, the widespread adoption of DDR in clinical practice has been hampered by the manual, time-intensive analysis required and its unestablished correlation with standard PFT results. Now, the clinical use of chest DDR in patients with lung disorders could receive a significant boost with the development of artificial intelligence (AI) to perform the time-consuming analysis involved in the technology.

Researchers at Mount Sinai Hospital (New York, NY, USA) have developed a sophisticated AI "pipeline" utilizing convolutional neural networks (CNNs) to analyze sequences of DDR images of the lungs from patients. This approach aims to replicate the results of standard pulmonary function tests, effectively bridging the gap between DDR technology and conventional respiratory assessment methods. They created two specific CNNs for evaluating key aspects of lung movement in DDR sequences, using data from 55 patients representing a spectrum of lung health - from normal to those with obstructive and restrictive lung conditions. These CNNs were tasked with measuring lung areas in the images, essentially creating DDR-based pulmonary function tests (dPFTs). The researchers then undertook a comparative analysis of dPFTs against standard PFT measurements.

Their findings revealed statistically significant and strong correlations between the dPFT measurements and traditional PFT values, including total lung capacity, forced expiratory volume in one second, vital capacity, and functional residual capacity. These correlations indicate that dPFTs could potentially serve as alternatives to conventional PFTs, especially in scenarios where traditional tests are not feasible or available. DDR presents several advantages over conventional methods, including reduced radiation exposure compared to standard chest X-rays and the ability to provide valuable diagnostic information in situations where PFTs are inaccessible, such as for patients with neuromuscular disorders or during acute exacerbations of chronic obstructive pulmonary disease, concluded the researchers.

“Our study demonstrates robust dPFTs and PFTs correlations using an automated DDR analysis pipeline. This pipeline has potential to discern normal from abnormal physiology, suggesting dPFTs are valuable in assessing lung dynamics,” concluded the researchers.

Related Links:
Mount Sinai Hospital

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound System
Voluson Signature 18
New
Ultrasound Catheter Connector Cover
ACUSON AcuNav
New
Radiation Therapy Treatment Software Application
Elekta ONE

Print article
Radcal

Channels

MRI

view channel
Image: The artificial intelligence model outperformed clinical tests at predicting the progress of Alzheimer’s disease (Photo courtesy of 123RF)

AI Outperforms Clinical Tests at Predicting Alzheimer’s Progress from MRI Scans

Dementia is a major global health challenge, impacting over 55 million individuals worldwide and costing approximately USD 820 billion annually. Projections indicate that the number of cases will nearly... Read more

Ultrasound

view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

General/Advanced Imaging

view channel
Image: The NeuroLF ultra-compact brain Positron Emission Tomography (PET) scanner (Photo courtesy of Positrigo)

Breakthrough Brain PET System Aids Diagnosis of Neurological Disorders

Alzheimer's disease (AD) is the most prevalent type of dementia, representing approximately 70% of all dementia cases in individuals over 60 years of age. As of 2020, there were more than 55 million people... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Calantic Digital Solutions is an orchestrated suite of AI radiology solutions that aims to transform radiology (Photo courtesy of Bayer)

Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions

Imaging data constitutes approximately 90% of all medical data, with the volume of such data continuously expanding, thereby significantly increasing the workload for radiologists amid existing resource limitations.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.