We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Novel Imaging and Spectroscopy Technique Unveiled

By MedImaging International staff writers
Posted on 18 Oct 2016
Print article
Image: The directional emission of 164-keV γ-rays from the nuclei of the 131mXe radioactive tracer (Photo courtesy of Nature).
Image: The directional emission of 164-keV γ-rays from the nuclei of the 131mXe radioactive tracer (Photo courtesy of Nature).
Researchers have demonstrated a new imaging technique that combines nuclear imaging using gamma-ray cameras and Magnetic Resonance Imaging (MRI).

The research was published online on September 29, 2016, in the journal Nature. The combined imaging and spectroscopic modality uses the spatial information encoded into the spin orientations of very small quantities of a polarized radioactive tracer. The Polarized Nuclear Imaging (PNI) modality uses both Radio Frequency (RF) and magnetic-field gradients and obtains imaging information by detecting gamma rays. The modality requires only a single gamma ray detector, instead of a gamma ray camera.

The researchers from the University of Virginia (UVA; Charlottesville, VA, USA) produced images and spectra from a glass cell containing only a tiny quantity of 131mXe, a metastable isomer. The researchers polarized the isomer using a laser technique called spin-exchange optical pumping. The glass cell contained approximately 4 × 1013 atoms (around 1 millicurie) of the isomer.

According to the researchers, if they had filled the cell with water and used conventional MRI imaging, then they would have needed 1024 water molecules, billions of molecules more than the radioactive tracer. This new highly sensitivity technique could lead to a new class of nuclear medicine tracers and expanded applications for magnetic resonance imaging. The tiny quantity of radioactive tracer needed for the new imaging technique means that it would result in a much smaller radiation dose for imaging subjects.

Related Links:
University of Virginia

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
1.5T MRI System
uMR 670
Ultrasound Software
UltraExtend NX
New
Ultrasound System
Voluson Signature 18

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.