We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Ultrafast Laser Technology to Improve Cancer Treatment

By MedImaging International staff writers
Posted on 19 Dec 2023
Print article
Image: The new discovery could lead to more effective use of radiation therapy in oncology (Photo courtesy of INRS)
Image: The new discovery could lead to more effective use of radiation therapy in oncology (Photo courtesy of INRS)

Ultrafast laser technology continues to reveal its potential, especially in the field of healthcare. While the study of high-power laser pulses might seem theoretical, it often translates into practical applications, such as in cancer treatment. This was highlighted in a recent study that challenges some long-held beliefs in the scientific community about the capabilities of these lasers.

Traditionally, it was understood that focusing a high-intensity laser pulse in ambient air would create plasma at the focus point, generating electrons with a maximum energy of a few keV (kiloelectronvolts). However, surpassing this energy level in ambient air was considered unfeasible due to physical constraints. A research team at the Institut national de recherche scientifique (INRS, Québec City, Canada) has now shown that electrons accelerated in ambient air can achieve energies in the MeV (megaelectronvolts) range, approximately 1000 times higher than previously thought possible.

This significant advancement paves the way for major developments in medical physics. A notable application is in FLASH radiotherapy, an innovative method for treating tumors that are unresponsive to standard radiation therapy. FLASH radiotherapy delivers high doses of radiation extremely quickly (microseconds instead of minutes), better safeguarding the surrounding healthy tissue. The precise mechanism behind the FLASH effect, which seems to involve a swift deoxygenation of healthy tissues thereby reducing their sensitivity to radiation, is still not fully understood. The implications of this discovery are twofold. Firstly, it highlights the need for increased caution when handling tightly focused laser beams in ambient air. Secondly, measurements taken near the source revealed an electron radiation dose rate three to four times higher than what is used in conventional radiation therapy.

“No study has been able to explain the nature of the FLASH effect. However, the electron sources used in FLASH radiotherapy have similar characteristics to the one we produced by focusing our laser strongly in ambient air,” said  Simon Vallières, postdoctoral researcher and first author of the study. “Once the radiation source is better controlled, further research will allow us to investigate what causes the FLASH effect and to, ultimately, offer better radiation treatments to cancer patients.”

Related Links:

Gold Member
Solid State Kv/Dose Multi-Sensor
PACS Workstation
CHILI Web Viewer
Advanced Cardiac MRI Analysis Software
3Di Cardiac MR
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers

Print article



view channel
Image: LumiGuide enables doctors to navigate through blood vessels using light instead of X-ray (Photo courtesy of Philips)

3D Human GPS Powered By Light Paves Way for Radiation-Free Minimally-Invasive Surgery

In vascular surgery, doctors frequently employ endovascular surgery techniques using tools such as guidewires and catheters, often accessing through arteries like the femoral artery. This method is known... Read more


view channel
Image: The VR visualization platform provides patients and surgeons with access to real-time 3D medical imaging (Photo courtesy of Avatar Medical)

VR Visualization Platform Creates 3D Patient Avatars from CT and MR Images in Real-Time

Surgeons and patients must currently rely on black and white medical images interpreted by radiologists. This limitation becomes more pronounced in complex surgeries, leading to issues such as patient... Read more


view channel
Image: Intravascular ultrasound provides a more accurate and specific picture of the coronary arteries (Photo courtesy of 123RF)

Intravascular Imaging Significantly Improves Outcomes in Cardiovascular Stenting Procedures

Individuals with coronary artery disease, which involves plaque accumulation in the arteries leading to symptoms like chest pain, shortness of breath, and heart attacks, often undergo a non-surgical procedure... Read more

General/Advanced Imaging

view channel
Image: Routine chest CT holds untapped potential for revealing patients at risk for cardiovascular disease (Photo courtesy of Johns Hopkins)

Routine Chest CT Exams Can Identify Patients at Risk for Cardiovascular Disease

Coronary artery disease (CAD) is the primary cause of death globally. Adults without symptoms but at risk can be screened using EKG-gated coronary artery calcium (CAC) CT scans, which are crucial in assessing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.