Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Siemens Healthineers

Provides customized electronic systems and advanced imaging, diagnostics, therapy, and healthcare IT solutions for th... read more Featured Products: More products

Download Mobile App




PET-CT Identifies Ruptured and High-Risk Coronary Plaque

By MedImaging International staff writers
Posted on 09 Jan 2014
Scientists have discovered that the tracer 18F-sodium fluoride (18F-NaF) used with positron emission tomography-computed tomography (PET-CT) imaging technology is the first noninvasive imaging modality to identify and localize ruptured and high-risk coronary plaque.

The University of Edinburgh (Scotland, UK) is leading the heart disease study with the help of a Biograph mCT PET-CT system developed by Siemens Healthcare (Erlangen, Germany). The new study’s findings were published October 2013 in the Lancet. Currently there is no noninvasive way of finding high-risk plaques at risk of rupturing and causing a heart attack. The imaging technology is providing new clues into clinical research into early diagnosis of the disorder.

In the prospective clinical trial, patients with myocardial infarction and stable angina underwent 18F-NaF and 18F-fluorodeoxyglucose (18F-FDG) PET-CT and invasive coronary angiography. 18F-NaF uptake was compared with histology in carotid endarterectomy specimens from patients with symptomatic carotid disease, and with intravascular ultrasound in patients with stable angina. The primary endpoint was the comparison of 18F-fluoride tissue-to-background ratios of culprit and non-culprit coronary plaques of patients with acute myocardial infarction.

In 93% (37) of patients with myocardial infarction, the highest coronary 18F-NaF uptake was seen in the culprit plaque. By contrast, coronary 18F-fluorodeoxyglucose (FDG) uptake was typically concealed by myocardial uptake and where discernible, there were no differences between culprit and non-culprit plaques. Marked 18F-NaF uptake occurred at the site of all carotid plaque ruptures and was linked with histologic evidence of active calcification, macrophage infiltration, apoptosis, and necrosis. Forty-five percent (18) of patients with stable angina had plaques with focal 18F-NaF uptake that were associated with more high-risk features on intravascular ultrasound than those without uptake.

The plaque areas in the blood vessels were easily identifiable by using the Biograph mCT scanner. In the patients with angina, advanced notice that they had high-risk plaques and a heart attack may be impending. These patients could then be targeted with aggressive therapy to avoid future events.

“Being able to identify dangerous fatty plaques likely to cause a heart attack is something that conventional heart tests can’t do. This research suggests that PET-CT scanning may provide an answer, identifying ‘ticking time bomb’ patients at risk of a heart attack,” said Prof. Peter Weissberg, medical director at the British Heart Foundation (BHF; London, UK). “Nearly 20 years of BHF-funded research has led us to this point. We now need to confirm these findings, and then understand how best to use new tests like this in the clinic to benefit heart patients.”

BHF clinical lecturer and cardiologist Dr. Marc Dweck, who led the research at the University of Edinburgh, stated: “We have developed what we hope is a way to ‘light up’ plaques on the brink of rupturing and causing a heart attack. If we could know how close a person is to having a heart attack, we could step in with medication or surgery before the damage is done. This is a first step towards that goal. The next stage is to confirm these findings in larger studies to establish first that this technique can truly predict heart attacks and secondly that treatment can help patients avoid these events.”

“Siemens Healthcare is delighted that the Biograph mCT is aiding ground-breaking research into the UK’s biggest killer—heart disease,” remarked Lawrence Foulsham, business manager, molecular imaging at Siemens Healthcare. “The condition is a clinical priority for the UK; therefore advancements in this field are incredibly important. We have a long-standing partnership with the Clinical Research Imaging Center at the University of Edinburgh and look forward to assisting them with further clinical research insights into the future.”

The Clinical Research Imaging Center at the University of Edinburgh installed the Biograph mCT in 2010.

Related Links:

Siemens Healthcare
University of Edinburgh



Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Table
Powered Ultrasound Table-Flat Top
Ultrasound System
Acclarix AX9
New
Wireless Handheld Ultrasound System
TE Air
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.