We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




3-D Human Heart Printed Using Imaging Techniques

By MedImaging International staff writers
Posted on 05 Jul 2015
Print article
Image: 3-D Model of the Heart (Photo courtesy of Materialise).
Image: 3-D Model of the Heart (Photo courtesy of Materialise).
Congenital heart specialists have printed a 3-D anatomic model of a patient’s heart by integrating CT and Echocardiography techniques.

This is the first time that researchers have integrated Computed Tomography (CT) and 3-D Transesophageal Echocardiography (3DTEE) to print a hybrid 3-D model of a heart. CT provided enhanced visualization of the heart’s external anatomy while 3DTEE provided visualization of valve anatomy. Magnetic Resonance Imaging (MRI) could also be integrated into the hybrid image to further enhance the 3-D model.

The model was created by researchers at the Spectrum Health Helen DeVos Children’s Hospital (Grand Rapids, MI, USA). The researchers used the Mimics Innovation Suite software made by Materialise (Leuven, Belgium) to register images from the two imaging modalities, and selectively integrated datasets to create an anatomically accurate 3-D model of the heart. The model was printed using Materialise’s HeartPrint Flex technology.

Multiplanar reformatting enables virtual dissection of the heart, and helps visualize underlying pathology, such as heart defect. Hybrid 3-D models could also be used to help cardiologists plan trans-catheter or surgical interventions.

Joseph Vettukattil, MD, co-director and 3-D/4-D echocardiography researcher from the Helen DeVos Children’s Hospital, said, “This is a huge leap for individualized medicine in cardiology and congenital heart disease. The technology could be beneficial to cardiologists and surgeons. The model will promote better diagnostic capability and improved interventional and surgical planning, which will help determine whether a condition can be treated via transcatheter route or if it requires surgery.”

Related Links:

Helen DeVos Children’s Hospital
Materialise 


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Software
UltraExtend NX
PACS Workstation
CHILI Web Viewer
Color Doppler Ultrasound System
DRE Crystal 4PX

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.