We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasound-Activated Hydrogel Could Revolutionize Drug Delivery for Medical Applications

By MedImaging International staff writers
Posted on 30 Sep 2024
Print article
Image: The composite hydrogel enables sustained and consistent drug release, triggered by ultrasound (Photo courtesy of Journal of Controlled Release; DOI: 10.1016/j.jconrel.2024.08.001)
Image: The composite hydrogel enables sustained and consistent drug release, triggered by ultrasound (Photo courtesy of Journal of Controlled Release; DOI: 10.1016/j.jconrel.2024.08.001)

Researchers have created a composite hydrogel that enables sustained and consistent drug release, triggered by ultrasound. This breakthrough could transform drug delivery for numerous medical applications where maintaining constant drug levels is essential for optimal therapeutic outcomes.

Developed by researchers at Michigan Medicine (Ann Arbor, MI, USA), the composite is known as an acoustically responsive scaffold and utilizes a fibrin hydrogel matrix. Upon exposure to ultrasound, an emulsion embedded in the hydrogel vaporizes into bubbles, releasing the encapsulated drug. While current drug delivery systems, such as osmotic pumps, can provide zero-order release—delivering a constant drug dose over time—they often have limitations that this fibrin hydrogel can address. The ability to control drug release through ultrasound allows for sustained zero-order release, providing a consistent drug level over an extended period. This approach could improve treatment effectiveness and reduce side effects associated with fluctuating drug concentrations. A key advantage is the use of fibrin, a biocompatible material that naturally degrades in the body, eliminating the need for surgical removal after treatment, which is sometimes required with other implantable systems.

In the study published in the October 2024 issue of the Journal of Controlled Release, the researchers developed stepwise equations to describe the multi-phase release behavior of the acoustically responsive scaffolds. This process includes an initial rapid release triggered by ultrasound, followed by a steady, zero-order release phase. These equations offer a new framework for designing and optimizing ultrasound-triggered drug delivery systems. The research team had previously used these scaffolds to promote blood vessel growth. Expanding this technology to drug delivery brings several benefits, such as on-demand release, personalized treatment plans, and non-invasive dose adjustments. The team is now working on acoustically responsive scaffolds that can sequentially deliver multiple growth factors, potentially paving the way for more advanced applications in tissue engineering and regenerative medicine.

“Having a mathematical model that accurately describes the release process from the ARS is crucial for ultimately personalizing treatment,” said Mario L. Fabiilli, Ph.D., principal investigator within the Ultrasound Laboratory and senior author on the paper. “In the future, these equations will empower us to precisely fine tune the drug dose non-invasively to meet individual patient needs.”

Related Links:
Michigan Medicine

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Endoscopic Ultrasound Fine Needle Biopsy Device
Acquire
Illuminator
Trimline Basic
New
Opaque X-Ray Mobile Lead Barrier
2594M

Print article
Radcal

Channels

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

General/Advanced Imaging

view channel
Image: Heavy smokers can ben Image (2):	efit from lung cancer screening using low-dose CT (Photo courtesy of 123RF)

Low-Dose CT Screening for Lung Cancer Can Benefit Heavy Smokers

Lung cancer is often diagnosed at a late stage, with only about one-fifth to one-sixth of patients surviving five years after diagnosis. A new report now suggests that low-dose computed tomography (CT)... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.