We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Detects Fatty Liver Disease from Chest X-Rays

By MedImaging International staff writers
Posted on 01 Jul 2025
Image: AI decision-making process with chest X-ray images (Photo courtesy of Osaka Metropolitan University)
Image: AI decision-making process with chest X-ray images (Photo courtesy of Osaka Metropolitan University)

Fatty liver disease, which results from excess fat accumulation in the liver, is believed to impact approximately one in four individuals globally. If not addressed in time, it can progress to severe conditions such as cirrhosis and liver cancer, underscoring the importance of early detection and treatment. The current standard diagnostic tools for fatty liver disease include ultrasounds, CT scans, and MRIs, all of which require expensive, specialized equipment and dedicated facilities.

By contrast, chest X-rays are more commonly used, cost-effective, and involve minimal radiation. Although primarily employed to assess the lungs and heart, chest X-rays also partially image the liver, making it possible to identify signs of fatty liver disease. Despite this potential, the link between chest X-rays and the condition has rarely been studied in depth. Now, researchers have created an AI model capable of identifying fatty liver disease using chest X-ray images.

In a retrospective study, a research team from Osaka Metropolitan University (Osaka, Japan) used 6,599 chest X-ray images from 4,414 patients to develop their AI model based on controlled attenuation parameter (CAP) scores. Their results, published in Radiology Cardiothoracic Imaging, demonstrated that the AI model achieved high accuracy, with the area under the receiver operating characteristic curve (AUC) ranging from 0.82 to 0.83.

“The development of diagnostic methods using easily obtainable and inexpensive chest X-rays has the potential to improve fatty liver detection. We hope it can be put into practical use in the future,” said Associate Professor Sawako Uchida-Kobayashi who led the research.

Related Links:
Osaka Metropolitan University

Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
MRI System
nanoScan MRI 3T/7T
Radiation Safety Barrier
RayShield Intensi-Barrier
Digital X-Ray Detector Panel
Acuity G4

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.