We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasensitive Broadband Transparent Ultrasound Transducer Enhances Medical Diagnosis

By MedImaging International staff writers
Posted on 18 Mar 2024
Print article
Image: Structure of the proposed transparent ultrasound transducer and its optical transmittance (Photo courtesy of POSTECH)
Image: Structure of the proposed transparent ultrasound transducer and its optical transmittance (Photo courtesy of POSTECH)

The ultrasound-photoacoustic dual-modal imaging system combines molecular imaging contrast with ultrasound imaging. It can display molecular and structural details inside the body in real time without using ionizing radiation. This feature makes it promising for enhancing medical diagnoses by offering a variety of physiological and histological details, leading to more accurate and safer patient care. However, integrating optical and ultrasound pathways often reduces the efficiency of traditional ultrasound transducers. Thus, developing a transducer that is capable of simple and seamless integration is vital for its real-world application. Researchers have now tackled these issues faced in conventional ultrasound-photoacoustic systems by developing a high-performing, transparent ultrasonic transducer (TUT).

An ultrasound transducer either transmits or receives ultrasound. Conventional ultrasound transducers are made of several opaque layers to optimize acoustic performance, but this design cannot be seamlessly integrated into light pathways. This restriction reduces the effectiveness of both the optical and ultrasound systems. Although recent studies have investigated the use of transparent materials for TUTs to solve this problem, finding a balance between transparency and optimal acoustic performance across the transducer layers remains a challenge. In new research conducted at Pohang University of Science and Technology (POSTECH, Pohang, South Korea), the researchers demonstrated a transparent material made from a mix of silicon dioxide (SiO2) and epoxy, which they used to create the novel TUT.

This cutting-edge TUT demonstrates remarkable optical clarity (over 80%) and maintains the same bandwidth (±30% at the center frequency) as conventional opaque ultrasound transducers. When used in the ultrasound-photoacoustic dual-modal system, the novel TUT achieved depth-to-resolution ratios exceeding 500 for ultrasound imaging and 370 for photoacoustic imaging—rates three to six times greater than previous photoacoustic systems. Importantly, this study surpasses the traditional depth-to-resolution ratio limit of 200 in photoacoustic research, reaching 370. Furthermore, this imaging system successfully performed detailed structural and functional imaging in live animals and humans, indicating its broad application potential.

"The application of this technology extends across various medical devices, encompassing tasks like using light stimulation for cell manipulation, employing laser surgery for tumor removal, and employing ultrasound for the examination of residual tissue,” said POSTECH Professor Chulhong Kim. “Our aspiration is that this research will be beneficial in diverse fields, including those employing ultrasound and optical sensors such as mobile devices and robotics."

Related Links:
POSTECH

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Endoscopic Ultrasound Fine Needle Biopsy Device
Acquire
New
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90
New
Ultra-Flat DR Detector
meX+1717SCC

Print article
Radcal

Channels

MRI

view channel
Image: The new AI model efficiently reaches clinical-expert-level accuracy in complex medical scans (Photo courtesy of Leticia Ortiz/UCLA)

AI Model Achieves Clinical Expert Level Accuracy in Analyzing Complex MRIs and 3D Medical Scans

Artificial neural networks train by performing repeated calculations on large datasets that have been carefully examined and labeled by clinical experts. While standard 2D images display length and width,... Read more

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

General/Advanced Imaging

view channel
Image: A kidney showing positive [89Zr]Zr-girentuximab PET and histologically confirmed clear-cell renal cell carcinoma (Photo courtesy of Dr. Brian Shuch/UCLA Health)

Non-Invasive Imaging Technique Accurately Detects Aggressive Kidney Cancer

Kidney cancers, known as renal cell carcinomas, account for 90% of solid kidney tumors, with over 81,000 new cases diagnosed annually in the United States. Among the various types, clear-cell renal cell... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Focused ultrasound therapy is poised to become an essential tool in every hospital, cancer care center and physician office (Photo courtesy of Arrayus)

Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer

Pancreatic cancer remains one of the most difficult cancers to treat due to its dense tissue structure, which limits the effectiveness of traditional drug therapies. Bracco Imaging S.A. (Milan, Italy)... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.