We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Ultrasound Probe Images Entire Organ in 4D

By MedImaging International staff writers
Posted on 03 Nov 2025
Image: 4D visualization of the vascularization of an entire kidney obtained using the multi-lens probe (Photo courtesy of Alexandre Dizeux, Physics for Medicine/Inserm)
Image: 4D visualization of the vascularization of an entire kidney obtained using the multi-lens probe (Photo courtesy of Alexandre Dizeux, Physics for Medicine/Inserm)

Disorders of blood microcirculation can have devastating effects, contributing to heart failure, kidney failure, and chronic diseases. However, existing imaging technologies cannot visualize the full network of arteries, veins, and microvessels throughout an entire organ in real time. Now, researchers have developed a groundbreaking 4D imaging technique that captures organ-wide blood flow in three dimensions plus time—offering a new window into the body’s circulatory system.

Blood microcirculation—the flow of blood through tiny vessels that deliver oxygen and nutrients to tissues—is vital to organ health. When this intricate system malfunctions, cells are deprived of essential resources, and waste removal is impaired. Until now, no imaging modality has been capable of simultaneously visualizing and quantifying the microcirculatory network at high resolution across an entire organ.

Researchers at the Physics for Medicine Institute (Inserm/ESPCI Paris-PSL/CNRS, Paris, France) have developed a novel ultrasound probe that uses advanced ultrasound imaging principles to create 4D maps of vascularization and blood flow dynamics in large animal models—specifically the heart, kidney, and liver—at a level of precision never achieved before.

Their findings, published in Nature Communications, show that the non-invasive system successfully visualized blood vessels smaller than 100 micrometers and even distinguished the liver’s three separate vascular networks—arterial, venous, and portal—by identifying their unique hemodynamic signatures. This ability to differentiate fine vascular structures opens new possibilities for understanding how blood flow changes across organs under both healthy and diseased conditions.

According to the researchers, this technology represents a major step toward clinical application. The device can be paired with portable ultrasound equipment, making it feasible for hospital and clinical settings. An upcoming clinical trial will evaluate the system’s safety and effectiveness in human patients.

“This 4D image resolution is unprecedented, as is the ability to observe an entire large organ and its flow dynamics,” said Clément Papadacci. “Used in clinical settings, this technology could become a major tool for understanding vascular dynamics as a whole and could improve the diagnosis and monitoring of microcirculation disorders that are currently very difficult to detect.”

Related Links:
Inserm

Silver Member
X-Ray QA Device
Accu-Gold+ Touch Pro
X-Ray Illuminator
X-Ray Viewbox Illuminators
Ultrasound Table
Women’s Ultrasound EA Table
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.