We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Focused Ultrasound Temporarily Opens Blood-Brain Barrier to Enable DNA Testing for Brain Tumors

By MedImaging International staff writers
Posted on 28 Feb 2024
Print article
Image: Focused ultrasound can be used to temporarily open the blood-brain barrier (Photo courtesy of Washington University in St. Louis)
Image: Focused ultrasound can be used to temporarily open the blood-brain barrier (Photo courtesy of Washington University in St. Louis)

Biopsies play a crucial role in diagnosing and treating cancer, but when it comes to brain tumors, the process poses significant risks. The need for drilling into the skull and the potential complications of removing brain tissue, such as bleeding, brain swelling, or infection, make brain tumor biopsies particularly challenging. However, recent developments in noninvasive diagnostic methods have marked a significant advancement. Researchers are now exploring the use of focused ultrasound to collect DNA from brain tumors, representing a groundbreaking shift in brain tumor diagnostics.

Normally, a biopsy requires physically removing tissue from the body for examination. Tumors often release fragments of their DNA into the bloodstream, which can be detected and analyzed through a liquid biopsy. This method is already used for some cancers, offering a noninvasive way to repeatedly sample tumor DNA. However, detecting DNA from brain tumors is complex due to the blood-brain barrier, a protective vascular network that restricts substances from entering or leaving the brain. The new sonobiopsy technique uses focused ultrasound to temporarily disrupt the blood-brain barrier, allowing small molecules, like tumor DNA, to pass into the bloodstream. This DNA can then be collected through a simple blood draw for analysis. The process involves microbubbles, FDA-approved contrast agents used in ultrasound imaging. These microbubbles react to focused ultrasound waves by expanding and contracting, exerting mechanical force on blood vessel walls, thereby enhancing the permeability of the blood vessels.

In a pioneering clinical trial led by Washington University in St. Louis, researchers tested a compact focused ultrasound device on five patients with high-grade gliomas before their scheduled brain surgeries. The sonobiopsy was performed directly on the brain tumor, followed by blood sample collection and tumor removal. The blood and tumor tissue were then analyzed to identify tumor-specific DNA sequences. The study revealed that sonobiopsy significantly increased the detection of tumor-specific DNA in the bloodstream in three of the five patients. For one patient, the amount of detectable tumor DNA nearly doubled. While not all patients showed increased DNA levels in their blood, this variation was anticipated. Importantly, there was no detectable tissue damage on the brain's surface or in the tumor tissue exposed to focused ultrasound, indicating the procedure's safety.

“We are still in the developmental stage of this technology, and our trial was designed to use the tumor tissue taken from the brain as a benchmark to determine if the DNA found in the bloodstream was shed from the tumor following the sonobiopsy procedure,” explained Eric Leuthardt, M.D., Shi Hui Huang Professor of Neurosurgery at Washington University School of Medicine. “After we fully validate our method, the ultimate goal is to use a sonobiopsy to noninvasively analyze lesions in the brain to understand their molecular and genetic makeup to guide treatment decisions.”

Related Links:
Washington University in St. Louis

Gold Member
Solid State Kv/Dose Multi-Sensor
Ultrasound Table
Ergonomic Advantage (EA) Line
Computed Tomography (CT) Scanner
Aquilion Serve SP
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article



view channel
Image: The emerging role of MRI alongside PSA testing is redefining prostate cancer diagnostics (Photo courtesy of 123RF)

Combining MRI with PSA Testing Improves Clinical Outcomes for Prostate Cancer Patients

Prostate cancer is a leading health concern globally, consistently being one of the most common types of cancer among men and a major cause of cancer-related deaths. In the United States, it is the most... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.