We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Focused Ultrasound Can Be Used To Deliver Drugs to Surgically Inaccessible Brain Lesions

By MedImaging International staff writers
Posted on 25 Jan 2024
Print article
Image: A USD 3.1 million grant is backing a promising focused ultrasound research (Photo courtesy of 123RF)
Image: A USD 3.1 million grant is backing a promising focused ultrasound research (Photo courtesy of 123RF)

Cerebral cavernous malformations (CCMs), commonly known as cavernomas, are clusters of abnormally grown capillaries in the brain or spinal cord. These growths can lead to serious health issues including seizures, severe headaches, paralysis, and potentially fatal bleeding in the brain. Surgical removal is often the primary treatment for symptomatic cavernomas. A team of researchers is now developing an innovative method for drug delivery to these lesions, employing a combination of focused ultrasound and microbubbles. This technique aims to penetrate the brain’s protective blood-brain barrier, which usually prevents drugs from reaching the malformations.

CCMs are estimated to exist in one out of every 500 individuals. While many of these lesions remain asymptomatic, they can cause significant health problems for some, with symptoms escalating as the blood vessels grow. Surgical removal of these malformations can be hazardous, and medication often fails to reach the target due to the blood-brain barrier. This barrier is crucial for protecting the brain from harmful substances, but it also restricts access to many therapeutic treatments, particularly larger biologic drugs. The research team at UVA Health (Charlottesville, VA, USA) is focusing on temporarily disrupting this barrier in a highly targeted manner. Their method involves the use of microbubbles combined with focused ultrasound waves to momentarily open the blood-brain barrier at specific locations. This temporary opening permits drug penetration to areas that are typically inaccessible.

Impressively, their experiments in a genetically accurate mouse model of the disease revealed that the combination of sound waves and microbubbles alone could stabilize CCMs, even without additional medication. This discovery implies potential additional benefits of this method, extending beyond just facilitating drug delivery. Currently, the researchers are perfecting an image-guided system that allows doctors to observe the opening of the blood-brain barrier in real-time, ensuring precise drug delivery. Their next steps involve understanding how to best use these drugs to control and possibly reduce the size of the cavernomas. Their ultimate goal is to manage the growth of these lesions non-invasively, eliminating the need for invasive skull surgery. If successful, this could revolutionize the treatment and management of CCMs.

“Many CCM patients are in desperate need of more effective treatment options. Some patients have surgically inaccessible lesions that can only be treated with radiation, but such treatments can have strong side effects and take a long time to show efficacy,” said Richard J. Price, Ph.D., who is leading the research team. “We ultimately wish to treat these lesions non-invasively with biologic drugs and gene therapies, but these therapies are relatively large in size and do not penetrate well into brain tissue. Low-intensity focused ultrasound can be steered almost anywhere in the brain. It gives us a unique opportunity to precisely deliver such advanced therapies right to the CCM.”

Related Links:
UVA Health

Gold Member
Solid State Kv/Dose Multi-Sensor
Advanced Cardiac MRI Analysis Software
3Di Cardiac MR
Ultrasound Software
UltraExtend NX
Color Doppler Ultrasound System
DRE Crystal 4PX

Print article



view channel
Image: LumiGuide enables doctors to navigate through blood vessels using light instead of X-ray (Photo courtesy of Philips)

3D Human GPS Powered By Light Paves Way for Radiation-Free Minimally-Invasive Surgery

In vascular surgery, doctors frequently employ endovascular surgery techniques using tools such as guidewires and catheters, often accessing through arteries like the femoral artery. This method is known... Read more


view channel
Image: The VR visualization platform provides patients and surgeons with access to real-time 3D medical imaging (Photo courtesy of Avatar Medical)

VR Visualization Platform Creates 3D Patient Avatars from CT and MR Images in Real-Time

Surgeons and patients must currently rely on black and white medical images interpreted by radiologists. This limitation becomes more pronounced in complex surgeries, leading to issues such as patient... Read more

Nuclear Medicine

view channel
Image: The PET imaging technique can noninvasively detect active inflammation before clinical symptoms arise (Photo courtesy of 123RF)

New PET Tracer Detects Inflammatory Arthritis Before Symptoms Appear

Rheumatoid arthritis, the most common form of inflammatory arthritis, affects 18 million people globally. It is a complex autoimmune disease marked by chronic inflammation, leading to cartilage and bone... Read more

General/Advanced Imaging

view channel
Image: Routine chest CT holds untapped potential for revealing patients at risk for cardiovascular disease (Photo courtesy of Johns Hopkins)

Routine Chest CT Exams Can Identify Patients at Risk for Cardiovascular Disease

Coronary artery disease (CAD) is the primary cause of death globally. Adults without symptoms but at risk can be screened using EKG-gated coronary artery calcium (CAC) CT scans, which are crucial in assessing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.