We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Groundbreaking Needle-Free Ultrasound Technology to Revolutionize Vaccine Delivery

By MedImaging International staff writers
Posted on 08 Dec 2023
Print article
Image: Ultrasound pulses deliver vaccines through the skin without needles (Photo courtesy of Darcy Dunn-Lawless)
Image: Ultrasound pulses deliver vaccines through the skin without needles (Photo courtesy of Darcy Dunn-Lawless)

A significant number of adults and children harbor intense fears of needles, a problematic factor given the reliance of public health on vaccinations, typically administered through injections. In response to this challenge, a novel ultrasound-based technique offers a needle-free and painless solution for vaccine delivery, potentially enhancing immune responses without the discomfort of a jab.

Researchers at University of Oxford (Oxford, UK) are exploring this innovative approach to vaccine administration that eliminates the need for needles. This technique employs an acoustic phenomenon known as 'cavitation,' which involves the formation and rapid collapse of bubbles triggered by sound waves. The team is focusing on utilizing the intense mechanical energy bursts from these collapsing bubbles in three key ways: firstly, to clear pathways through the skin's outer dead cell layer, enabling vaccine molecules to penetrate; secondly, to actively propel the drug molecules through these newly created channels; and thirdly, to permeate the cell membranes, a crucial step for certain vaccine types that need to enter the cells to be effective.

Initial tests on living organisms showed that while the cavitation method delivered substantially fewer vaccine molecules compared to traditional injection methods (700 times less), it surprisingly elicited a stronger immune response. The researchers speculate this increased efficiency might be due to the ultrasonic method targeting the skin, which is rich in immune cells, as opposed to muscle tissue typically targeted by injections. This discovery suggests the potential for a more effective and economical vaccine delivery method, reducing costs and improving efficacy, all while minimizing the risk of side effects.

“In my opinion, the main potential side effect is universal to all physical techniques in medicine: If you apply too much energy to the body, you can damage tissue,” said Darcy Dunn-Lawless, a doctoral student at the University of Oxford’s Institute of Biomedical Engineering. “Exposure to excessive cavitation can cause mechanical damage to cells and structures. However, there is good evidence that such damage can be avoided by limiting exposure, so a key part of my research is to try and fully identify where this safety threshold lies for vaccine delivery.”

Related Links:
University of Oxford 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Computed Tomography (CT) Scanner
Aquilion Serve SP
Imaging Table
Stille imagiQ2
New
PACS Workstation
CHILI Web Viewer

Print article
Radcal

Channels

Radiography

view channel
Image: LumiGuide enables doctors to navigate through blood vessels using light instead of X-ray (Photo courtesy of Philips)

3D Human GPS Powered By Light Paves Way for Radiation-Free Minimally-Invasive Surgery

In vascular surgery, doctors frequently employ endovascular surgery techniques using tools such as guidewires and catheters, often accessing through arteries like the femoral artery. This method is known... Read more

MRI

view channel
Image: The VR visualization platform provides patients and surgeons with access to real-time 3D medical imaging (Photo courtesy of Avatar Medical)

VR Visualization Platform Creates 3D Patient Avatars from CT and MR Images in Real-Time

Surgeons and patients must currently rely on black and white medical images interpreted by radiologists. This limitation becomes more pronounced in complex surgeries, leading to issues such as patient... Read more

Nuclear Medicine

view channel
Image: The PET imaging technique can noninvasively detect active inflammation before clinical symptoms arise (Photo courtesy of 123RF)

New PET Tracer Detects Inflammatory Arthritis Before Symptoms Appear

Rheumatoid arthritis, the most common form of inflammatory arthritis, affects 18 million people globally. It is a complex autoimmune disease marked by chronic inflammation, leading to cartilage and bone... Read more

General/Advanced Imaging

view channel
Image: Routine chest CT holds untapped potential for revealing patients at risk for cardiovascular disease (Photo courtesy of Johns Hopkins)

Routine Chest CT Exams Can Identify Patients at Risk for Cardiovascular Disease

Coronary artery disease (CAD) is the primary cause of death globally. Adults without symptoms but at risk can be screened using EKG-gated coronary artery calcium (CAC) CT scans, which are crucial in assessing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.