We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Imaging Technique Combines Ultrasound and Optical Tomography for Faster, Enhanced Scans

By MedImaging International staff writers
Posted on 05 Sep 2023
Print article
Image: A new imaging technique could provide clearer images for oncologists (Photo courtesy of 123RF)
Image: A new imaging technique could provide clearer images for oncologists (Photo courtesy of 123RF)

Quantitative photoacoustic tomography (QPAT) is a new imaging modality that combines ultrasound and optical tomography, providing valuable insights into internal body features using sound waves and light. The technique employs detectors for acoustic waves on the body's surface to gather acoustic wave intensity data. This data enables the creation of images of various optical properties of tissues, including absorption and diffusion, that hold critical information about the location and stage of cancerous tissue. Now, researchers are on a mission to improve medical imaging using the new QPAT technique.

Developing QPAT poses a major challenge due to insufficient acoustic wave measurements on the body's surface. This shortage can compromise image quality and lead to inaccurate diagnosis of cancerous tumors. To overcome this hurdle, a multidisciplinary team led by University of Texas at Arlington (Arlington, TX, USA) is working to significantly develop and improve the QPAT imaging technique using an innovative combination of game theory, statistical sensitivity analysis, and gradient-free optimal control methods. This approach aims to address the lack of acoustic wave measurements, stabilize computational algorithms, and recalibrate them. The goal is to achieve high-contrast and high-resolution images, thereby elevating the precision and effectiveness of the QPAT technique.

“QPAT is robust because it uses information from two types of imaging techniques and has the potential to provide high-quality images. It can tell us so much more about what’s going on under the skin,” said Souvik Roy, mathematics assistant professor at the University of Texas at Arlington. “By providing better images, doctors will be able to make more accurate diagnoses in shorter time frames. This will lessen anxiety for patients as well as decrease costs for the health care industry by reducing the need for repeated scans.”

“We hope to facilitate a safe start to research on imaging human subjects using QPAT,” Roy added. “Our ultimate goal is helping patients get better and develop more accurate images in a shorter time frame. These enhanced scans should help doctors and patients make better health care treatment decisions. Down the line, we know this will improve outcomes, reduce patient anxiety and be highly cost-effective.”

Related Links:
University of Texas at Arlington

New
Gold Supplier
IMRT Thorax Phantom
CIRS Model 002LFC
Gold Supplier
128 Slice CT Scanner
Supria 128
New
PACS Workstation
CHILI WebViewer NG
New
Radiotherapy Software
Node Platform

Print article
Sun Nuclear -    Mirion

Channels

Radiography

view channel
Image: The AI model improves tumor removal accuracy during breast cancer surgery (Photo courtesy of UNC School of Medicine)

AI Model Analyzes Tumors Removed Surgically in Real-Time

During breast cancer surgery, the surgeon removes the tumor, also known as a specimen, along with a bit of the adjacent healthy tissue to ensure all cancerous cells are excised. This specimen is then X-rayed... Read more

MRI

view channel
Image: MRI screen-detected breast cancers have been found to be most often invasive cancers (Photo courtesy of 123RF)

MRI Screen-Detected Breast Cancers Are Mostly Invasive

Annual breast MRI screening is advised for patients with a lifetime breast cancer risk exceeding 20%. There exists robust data about the features of mammographic screen-detected breast cancers, although... Read more

Nuclear Medicine

view channel
Image: An AI model can evaluate brain tumors on PET (Photo courtesy of Freepik)

AI Model for PET Imaging Determines Patient Response to Brain Tumor Treatments

The assessment of changes in metabolic tumor volume (MTV) through PET scans using specific radiotracers like F-18 fluoroethyl tyrosine (FET) plays a vital role in evaluating the treatment response in patients... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.