We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Wearable Ultrasound Patch Marks Breakthrough in Deep Tissue Monitoring

By MedImaging International staff writers
Posted on 04 May 2023
Print article
Image: The wearable ultrasound patch measures tissue stiffness more effectively (Photo courtesy of UC San Diego)
Image: The wearable ultrasound patch measures tissue stiffness more effectively (Photo courtesy of UC San Diego)

Ultrasound examination of tissues' biomechanical properties can assist in detecting and managing pathophysiological conditions, tracking lesion development, and evaluating rehabilitation progress. Engineers have now developed a stretchable ultrasonic array that enables non-invasive, serial, three-dimensional imaging of tissues up to four centimeters beneath the human skin's surface, with a spatial resolution of 0.5 millimeters. This novel method offers a non-invasive, long-term alternative to current approaches, boasting improved penetration depth.

The elastography monitoring system developed by engineers at the University of California San Diego (La Jolla, CA, USA) enables serial, non-invasive, and three-dimensional mapping of deep tissue mechanical properties, with several crucial applications. In medical research, serial data on pathological tissues can offer vital information on disease progression, such as cancer, which typically causes cells to stiffen. Wearable ultrasound patches not only perform the detection function of conventional ultrasound but also overcome its limitations, such as one-time testing, hospital-based testing, and the need for staff operation. This could help decrease misdiagnoses and fatalities while significantly reducing costs by offering a non-invasive and affordable alternative to traditional diagnostic procedures.

The device features a 16 by 16 array, with each element consisting of a 1-3 composite element and a silver-epoxy composite backing layer designed to absorb excessive vibration, thereby expanding the bandwidth and enhancing axial resolution. The array conforms to human skin and acoustically couples with it, allowing for accurate elastographic imaging validated through magnetic resonance elastography. The researchers aim to further improve the device by incorporating an elastomer layer with a known modulus, a so-called calibration layer, to obtain quantitative, absolute values of tissues' moduli. This enhancement would provide more comprehensive information about tissues' mechanical properties, thereby further refining the ultrasonic devices' diagnostic capabilities.

Besides monitoring cancerous tissues, this technology can help medical professionals accurately track liver fibrosis and cirrhosis progression and determine the most suitable treatment course. Moreover, by monitoring changes in tissue stiffness, the technology can offer valuable insights into musculoskeletal disorders' progression, such as tendonitis, tennis elbow, and carpal tunnel syndrome, allowing doctors to develop personalized treatment plans. Additionally, by monitoring arterial wall elasticity, doctors can detect early signs of myocardial ischemia and make timely interventions to prevent further damage.

“This new wave of wearable ultrasound technology is driving a transformation in the healthcare monitoring field, improving patient outcomes, reducing healthcare costs and promoting the widespread adoption of point-of-care diagnosis,” said Yuxiang Ma, a visiting student in the Xu group and study coauthor. “As this technology continues to develop, it is likely that we will see even more significant advances in the field of medical imaging and healthcare monitoring.”

Related Links:
University of California San Diego 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
1.5T Superconducting MRI System
uMR 680
New
Portable Digital X-Ray System
Acuity PDR
Ultrasound System
Aplio me

Print article
Radcal

Channels

Radiography

view channel
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)

Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16%... Read more

MRI

view channel
Image: SubtleSYNTH creates synthetic STIR images with zero acquisition time that are interchangeable with conventionally acquired STIR images (Photo courtesy of Subtle Medical)

AI-Powered Synthetic Imaging Software to Further Redefine Speed and Quality of Accelerated MRI

The development of innovative solutions is not only redefining the landscape of artificial intelligence (AI)-based diagnostic imaging but also simplifying the ever-increasing complexity of workflows faced... Read more

General/Advanced Imaging

view channel
Image: HeartFlow Plaque Analysis leverages cutting-edge AI for assessment of plaque quantity and composition (Photo courtesy of HeartFlow, Inc.)

Next Gen Interactive Plaque Analysis Platform Assesses Patient Risk in Suspected Coronary Artery Disease

A first-of-its-kind plaque analysis tool to be fully integrated with FFRCT (when FFRCT is performed) provides impactful insights that enhance clinical decision-making and enable personalized patient treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The new collaborations aim to further advance AI foundation models for medical imaging (Photo courtesy of Microsoft)

Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging

Medical imaging is a critical component of healthcare, with health systems spending roughly USD 65 billion annually on imaging alone, and about 80% of all hospital and health system visits involve at least... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.