We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

New Method Improves Accuracy of NIRF-IVUS Measurements in Cardiovascular Imaging

By MedImaging International staff writers
Posted on 17 Apr 2023
Print article
Image: Fluorescence-coated guidewire aids in accurate estimation of blood attenuation during intravascular procedures (Photo courtesy of TUM)
Image: Fluorescence-coated guidewire aids in accurate estimation of blood attenuation during intravascular procedures (Photo courtesy of TUM)

Intravascular ultrasound (IVUS) allows cardiologists to capture images of blood vessels' interiors using a slim ultrasound probe, which can then be used to assess issues like arterial thickening due to fat or plaque accumulation. Near-infrared fluorescence (NIRF) imaging is employed alongside IVUS for a more comprehensive evaluation of blood vessels. NIRF relies on fluorescent agents that highlight biological processes within the body. When injected into the bloodstream, these agents bind to specific pathology-related compounds on vessel walls, such as proteins or nucleic acids. The resulting fluorescence signals are combined with IVUS images for enhanced accuracy. However, during NIRF-IVUS measurements, the distance between the NIRF detector and the blood vessel wall continually changes. This presents a challenge, as blood attenuates the fluorescence signals' intensity, and the "amount" of blood between the NIRF detector and the vessel wall constantly varies.

A team of researchers led by the Technical University of Munich (TUM, Munich, Germany) has come up with an innovative solution to this problem. In a study, the team created a new technique to measure blood's fluorescence attenuation using a "guidewire" that moves the NIRF-IVUS probe. The concept is based on the constant visibility of the guidewire to the NIRF probe. By coating the guidewire with a known concentration of fluorescent particles, the guidewire signal offers an indirect measure of blood attenuation in the current image. The distance between the NIRF probe and the guidewire, as well as the blood vessel wall, is determined via IVUS, allowing for the calculation of a correction factor for the fluorescence signal measured at the blood vessel wall after a simple calibration procedure.

The team tested their technique in a clinical model using a small NIRF-IVUS system from a previous study and conducted experiments on capillary phantoms, which mimic small blood vessels' properties. They observed a 4.5-fold improvement over uncorrected NIRF signals and <11% errors for target signals, showing great promise. The correction method also maintained a mean accuracy of 70% in tissue experiments. These figures are significantly better than those achieved by other correction methods that use average attenuation factors instead of calculating them for each frame and precise probe-to-vessel distances measured via IVUS. The researchers believe that incorporating their technique into clinical practice should be relatively straightforward since no major modifications to existing equipment are necessary. With the appropriate coatings, the guidewire can serve as a reference standard for other intravascular fluorescence imaging modalities and optical methods beyond fluorescence.

“This new method for correcting intravascular NIRF signals is simple and accurate and could pave the way for in vivo studies and eventual clinical translation,” said Brian Pogue, Professor of Medical Physics at the University of Wisconsin-Madison.

Related Links:

Gold Supplier
Ultrasound System
Gold Supplier
Electrode Solution and Skin Prep
Body Array Coil
12-Channel Body Array Coil 1.5 / 3.0 T
Web-Based DICOM Viewer

Print article



view channel
Image: Intelligent NR provides high-quality diagnostic images containing significantly less grainy noise (Photo courtesy of Canon)

AI-Driven DR System Produces Higher Quality Images While Limiting Radiation Doses in Pediatric Patients

Ionizing radiation is a fundamental element in producing diagnostic X-rays, yet it's widely acknowledged for its cancer risk potential. Digital projection radiography, a vital imaging modality, accounts... Read more


view channel
Image: The researchers are using MRI-guided radiation therapy that pairs daily MRIs with radiation treatment (Photo courtesy of Sylvester)

AI Technique Automatically Traces Tumors in Large MRI Datasets to Guide Real-time Glioblastoma Treatment

Treating glioblastoma, a prevalent and aggressive brain cancer, involves the use of radiation therapy guided by CT imaging. While this method is effective in targeting radiation, it doesn't provide real-time... Read more

Nuclear Medicine

view channel
Image: A novel PET radiotracer facilitates early, noninvasive detection of IBD (Photo courtesy of Karmanos)

New PET Radiotracer Aids Early, Noninvasive Detection of Inflammatory Bowel Disease

Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, is an inflammatory condition of the gastrointestinal tract affecting roughly seven million individuals globally.... Read more

General/Advanced Imaging

view channel
Image: Artificial intelligence predicts therapy responses for ovarian cancer (Photo courtesy of 123RF)

AI Model Combines Blood Test and CT Scan Analysis to Predict Therapy Responses in Ovarian Cancer Patients

Ovarian cancer annually impacts thousands of women, with many diagnoses occurring at advanced stages due to subtle early symptoms. High-grade serous ovarian carcinoma, which accounts for 70-80% of ovarian... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Attendees can discover innovative products and technology in the RSNA 2023 Technical Exhibits (Photo courtesy of RSNA)

RSNA 2023 Technical Exhibits to Offer Innovations in AI, 3D Printing and More

The 109th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA, Oak Brook, IL, USA) to be held in Chicago, Nov. 26 to 30 is all set to offer a vast array of medical... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.