We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AR System Enables Free-Hand, Real-Time Needle Guidance for Prostate Cancer Diagnosis

By MedImaging International staff writers
Posted on 06 Mar 2023
Print article
Image: The HoloLens AR system superimposes anatomical features generated from MRI or CT scans onto the patient (Photo courtesy of NIH)
Image: The HoloLens AR system superimposes anatomical features generated from MRI or CT scans onto the patient (Photo courtesy of NIH)

Prostate cancer is the second most common cause of cancer-related deaths among men, according to the US Centers for Disease Control and Prevention. Transperineal (TP) biopsy is one of the conventional methods used for diagnosing and treating prostate cancer by collecting tissue samples through a needle inserted through the perineum wall. TP biopsy typically involves a pre-operation MRI scan and a transrectal ultrasound, with the images combined and displayed on a monitor for the urologist to visualize. The urologist can perform the needle insertion process free-hand or through a grid-based method. However, 2D visualization of a 3D region can make the needle's guidance and visualization a challenging task.

To address this issue, researchers from the US National Institutes of Health (NIH, Bethesda, MD, USA) have proposed an approach based on an augmented reality (AR) system called HoloLens. In their recent paper published in the Journal of Medical Imaging, the researchers have detailed their successful HoloLens AR system that accurately and effectively projects MRI and ultrasound images onto patients, helping to guide a needle to the target. The HoloLens AR system employs a volumetric 3D scan, like an MRI scan, to create an accurate view of the patient. Leveraging reference data from the patient, the MRI scan can be superimposed precisely onto the patient. The superimposed image is fed into the HoloLens goggles worn by the urologist and enables viewing the patient as well as the MRI of the patient in proper alignment. The HoloLens goggles also enable the urologist to view the image at different angles by moving the head. HoloLens can also display the pre-planned needle path on the patient, the target tissue of the prostate, and the real-time needle position during the procedure.

To evaluate their AR system's image overlay accuracy and needle targeting precision, the researchers utilized a 3D-printed phantom. They used the free-hand as well as planned-path guidance methods to guide needles into a gel phantom, and subsequently recorded the needle placement errors. The system was also used to deliver soft tissue markers onto tumors of a human pelvis phantom. The researchers found similar placement errors associated with both free-hand and planned-path guidance methods. Moreover, all implanted soft tissue markers were inside or in close proximity to the tumors.

“The current methods have certain limitations to them,” said Dr. Ming Li from the NIH who led the research. “Robot-assisted guidance is costly and adds procedural time, while other methods require a certain path for the needle that leaves out the outer reaches of the prostate. These problems are solved using the HoloLens AR system, which provides the doctor with the ability to use a free-hand approach.”

“The HoloLens has the potential to provide more flexibility than the current grid-based TP methods and can do so accurately,” highlighted Li. “By providing a 3D immersive experience, the HoloLens AR system makes free-hand lesion targeting feasible. As needle procedures move from rectum to the perineum, AR systems could provide great clinical value to doctors and patients by solving the problems associated with prostate intervention procedures.”

Related Links:
NIH

Gold Supplier
Premium Ultrasound Scanner
ARIETTA 850
New
Ceiling-Mounted Digital X-Ray System
DigitalDiagnost C50
New
Preclinical MRI System
NOVA
New
Elevating X-Ray Table
PROGNOST F

Print article

Channels

MRI

view channel
Image: New scan measures tumor oxygen levels in real-time to help guide treatment (Photo courtesy of ICR)

Oxygen-Enhanced MRI Technology Allows Cancer Doctors to See Inside Tumors

Since the 1950s, researchers have been aware of the difficulty in effectively treating tumors deprived of oxygen, a problem that is further exacerbated when treating them with radiotherapy.... Read more

Ultrasound

view channel
Image: New focused ultrasound is effective for treating Parkinson’s, movement disorders (Photo courtesy of Pexels)

New Focused Ultrasound Treatment Proves Effective for Parkinson’s Disease Patients

Parkinson's disease is a neurological condition characterized by the loss of dopamine neurons within the brain. While medications such as levodopa can be effective in managing this condition, some patients... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

General/Advanced Imaging

view channel
Image: Viz.ai is the first to receive FDA 510(k) clearance for an AI algorithm for abdominal aortic aneurysm (Photo courtesy of Pexels)

AI Algorithm Flags and Triages Suspected Abdominal Aortic Aneurysms from Chest CT Scans

An abdominal aortic aneurysm (AAA) denotes a bulge in the abdominal aorta, the chief artery that transfers blood from the heart to other parts of the body. If not detected and treated in time, AAA can... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.