We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

TI-RADS with Deep Learning Algorithm Guide Diagnoses of Pediatric Thyroid Nodules on Ultrasound

By MedImaging International staff writers
Posted on 20 Oct 2022
Print article
Image: ACR TI-RADS and a deep learning algorithm can also guide decisions to perform fine-needle aspiration (Photo courtesy of Pexels)
Image: ACR TI-RADS and a deep learning algorithm can also guide decisions to perform fine-needle aspiration (Photo courtesy of Pexels)

ACR TI-RADS and a deep learning algorithm trained on adult populations offer alternative strategies for evaluating thyroid nodules in children and younger adults, including guiding decisions to perform fine-needle aspiration.

In a new study, researchers at Duke University (Durham, NC, USA) evaluated 139 patients (119 female, 20 male) aged ≤21 years with a thyroid nodule on ultrasound with definitive pathologic results from fine-needle aspiration and/or surgical excision. Single transverse and longitudinal images of one nodule per patient were then extracted. Three radiologists independently characterized nodules based on overall impression (benign vs. malignant) and ACR TI-RADS. A previously developed deep learning algorithm determined malignancy likelihood for each nodule, which was used to derive a risk level. Ultimately, for evaluating thyroid nodules via ultrasound in children and young adults, radiologists’ overall impressions - representing the current standard clinical approach - had mean sensitivity of 58.3% and mean specificity of 79.9%; ACR TI-RADS had mean sensitivity of 85.1% and mean specificity of 50.6%, and a deep learning algorithm had sensitivity of 87.5% and specificity of 36.1%.

“Both ACR TI-RADS and the deep learning algorithm had higher sensitivity, albeit lower specificity, compared with radiologists’ overall impressions,” wrote co-first author Jichen Yang, BSE, from the department of electrical and computer engineering at Duke University. Adding that the algorithm had similar sensitivity, but lower specificity, than ACR TI-RADS, “interobserver agreement was higher for ACR TI-RADS than for overall impressions,” Yang noted.

“Given the heightened priority for sensitivity when evaluating thyroid nodules in children, compared with in adults, the findings support the continued exploration in children of ACR TI-RADS and of the deep learning algorithm,” Yang concluded.

Related Links:
Duke University

Gold Supplier
Premium Ultrasound Scanner
ARIETTA 850
New
Ultrasound System
Ultimus 9E
New
Preclinical MRI System
NOVA
New
Barrier Mount
RayShield SideWinder

Print article

Channels

MRI

view channel
Image: New scan measures tumor oxygen levels in real-time to help guide treatment (Photo courtesy of ICR)

Oxygen-Enhanced MRI Technology Allows Cancer Doctors to See Inside Tumors

Since the 1950s, researchers have been aware of the difficulty in effectively treating tumors deprived of oxygen, a problem that is further exacerbated when treating them with radiotherapy.... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

General/Advanced Imaging

view channel
Image: Viz.ai is the first to receive FDA 510(k) clearance for an AI algorithm for abdominal aortic aneurysm (Photo courtesy of Pexels)

AI Algorithm Flags and Triages Suspected Abdominal Aortic Aneurysms from Chest CT Scans

An abdominal aortic aneurysm (AAA) denotes a bulge in the abdominal aorta, the chief artery that transfers blood from the heart to other parts of the body. If not detected and treated in time, AAA can... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.