We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




TI-RADS with Deep Learning Algorithm Guide Diagnoses of Pediatric Thyroid Nodules on Ultrasound

By MedImaging International staff writers
Posted on 20 Oct 2022
Image: ACR TI-RADS and a deep learning algorithm can also guide decisions to perform fine-needle aspiration (Photo courtesy of Pexels)
Image: ACR TI-RADS and a deep learning algorithm can also guide decisions to perform fine-needle aspiration (Photo courtesy of Pexels)

ACR TI-RADS and a deep learning algorithm trained on adult populations offer alternative strategies for evaluating thyroid nodules in children and younger adults, including guiding decisions to perform fine-needle aspiration.

In a new study, researchers at Duke University (Durham, NC, USA) evaluated 139 patients (119 female, 20 male) aged ≤21 years with a thyroid nodule on ultrasound with definitive pathologic results from fine-needle aspiration and/or surgical excision. Single transverse and longitudinal images of one nodule per patient were then extracted. Three radiologists independently characterized nodules based on overall impression (benign vs. malignant) and ACR TI-RADS. A previously developed deep learning algorithm determined malignancy likelihood for each nodule, which was used to derive a risk level. Ultimately, for evaluating thyroid nodules via ultrasound in children and young adults, radiologists’ overall impressions - representing the current standard clinical approach - had mean sensitivity of 58.3% and mean specificity of 79.9%; ACR TI-RADS had mean sensitivity of 85.1% and mean specificity of 50.6%, and a deep learning algorithm had sensitivity of 87.5% and specificity of 36.1%.

“Both ACR TI-RADS and the deep learning algorithm had higher sensitivity, albeit lower specificity, compared with radiologists’ overall impressions,” wrote co-first author Jichen Yang, BSE, from the department of electrical and computer engineering at Duke University. Adding that the algorithm had similar sensitivity, but lower specificity, than ACR TI-RADS, “interobserver agreement was higher for ACR TI-RADS than for overall impressions,” Yang noted.

“Given the heightened priority for sensitivity when evaluating thyroid nodules in children, compared with in adults, the findings support the continued exploration in children of ACR TI-RADS and of the deep learning algorithm,” Yang concluded.

Related Links:
Duke University

Mammo DR Retrofit Solution
DR Retrofit Mammography
X-ray Diagnostic System
FDX Visionary-A
Multi-Use Ultrasound Table
Clinton
Half Apron
Demi

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.