We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
30 Jan 2023 - 02 Feb 2023

New Technique Combines Two Ultrasound Technologies to Painlessly Break Kidney Stones

By MedImaging International staff writers
Posted on 11 Oct 2022
Print article
Image: Ultrasound can be used to move, reposition or break up kidney stones, all while the patient is awake (Photo courtesy of Pexels)
Image: Ultrasound can be used to move, reposition or break up kidney stones, all while the patient is awake (Photo courtesy of Pexels)

Stones in the ureter, which leads from the kidney to the bladder, can cause severe pain and are a common reason for emergency department visits. Most patients with ureteral stones are advised to wait to see if the stone will pass on its own. However, this observation period can last for weeks, with nearly one-fourth of patients eventually requiring surgery. Now, a feasibility study has found that a new technique combining the use of two ultrasound technologies may offer an option to move kidney stones out of the ureter with minimal pain and no anesthesia. In the procedure, the physician uses a handheld transducer placed on the skin to direct ultrasound waves towards the stone. The ultrasound can then be used to move and reposition the stones to promote their passage, a process called ultrasound propulsion, or the break up the stone, a technique called burst wave lithotripsy (BWL). The researchers who evaluated the new technique to meet the need for a way to treat stones without surgery hope that with this new technology, the procedure of moving or breaking up the stones could eventually be performed in a clinic or emergency room setting.

Development of this technology first started five years ago, when NASA funded a study to see if kidney stones could be moved or broken up, without anesthesia, on long space flights, such as the Mars missions. The technology has worked so well that NASA has downgraded kidney stones as a key concern. The study by researchers at UW Medicine (Seattle, WA, USA) was designed to test the feasibility of using the ultrasonic propulsion or using BWL to break up stones in awake, unanaesthetized patients. Other UW Medicine trials have looked at breaking apart kidney stones inside the kidneys. This was the first trial to look at moving the stones or breaking them apart in the ureter with BWL

The study involved 29 patients out of which 16 were treated with propulsion alone and 13 with propulsion and burst wave lithotripsy. In 19 patients, the stones moved. In two cases, the stones moved out of the ureter and into the bladder. Burst wave lithotripsy fragmented the stones in seven of the cases. At a two-week follow up, 18 of 21 patients (86%) whose stones were located lower in the ureter, closer to the bladder, had passed their stones. In this group, the average time to stone passage was about four days, the study noted. One of these patients felt "immediate relief" when the stone was dislodged from the ureter, the study stated. The next step for the researchers would be to perform a clinical trial with a control group, which would not receive either BWL bursts or ultrasound propulsion, to evaluate the degree to which this new technology potentially aids stone passage.

“It’s nearly painless, and you can do it while the patient is awake, and without sedation, which is critical,” said lead author Dr. M. Kennedy Hall, a UW Medicine emergency medicine doctor. “We now have a potential solution for that problem.”

Related Links:
UW Medicine 

Gold Supplier
SBRT Phantom with Removable Spine
E2E SBRT Phantom with Removable Spine Model 036S-CVXX-xx
New
High Definition Detector
Focus HD 35/43
New
Electric DR Bed
Leenray Electric Bed DR
New
Digital Imaging System
ACQUIDR

Print article
CIRS -  MIRION

Channels

MRI

view channel
Image: BlueSeal magnet for helium-free MR operations (Photo courtesy of Philips)

Use of High-Temperature Superconductors to Make MR Imaging More Affordable, Accessible and Sustainable

A new research partnership focuses on the use of high-temperature superconductors to make MR imaging more affordable, accessible and sustainable in the future. Operating at higher temperatures and eliminating... Read more

General/Advanced Imaging

view channel
Image: Ultra-high-resolution photon-counting CT reveals bronchiolectasis (Photo courtesy of Medical University of Vienna)

Photon-Counting CT Shows More Post-COVID-19 Lung Damage

Photon-counting detector (PCD) CT has emerged in the last decade as a promising imaging tool. It works by converting X-ray photons directly into an electrical signal. This avoids the intermediate step... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.