We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Novel Method Combines Optical Measurements with Ultrasound for Monitoring ‘Engine’ of Pregnancy

By MedImaging International staff writers
Posted on 17 Aug 2022
Print article
Image: The new device can better measure blood flow and oxygenation in the placenta (Photo courtesy of University of Pennsylvania)
Image: The new device can better measure blood flow and oxygenation in the placenta (Photo courtesy of University of Pennsylvania)

The placenta, considered as the “engine” of pregnancy, is an organ that plays a crucial role in delivering nutrients and oxygen to the fetus. Placental dysfunction can lead to complications such as fetal growth restriction, preeclampsia, and stillbirth. Now, researchers developing tools to assess human placental structure and function in real time, including optical devices, have come up with a novel method for imaging the placenta in pregnant patients. By combining optical measurements with ultrasound, the team has demonstrated how oxygen levels in the placenta can be monitored noninvasively, providing a new way to generate a better understanding of this complex, crucial organ.

For three years, researchers at the University of Pennsylvania (Philadelphia, PA, USA) and the Children’s Hospital of Philadelphia (CHOP, (Philadelphia, PA, USA) optimized the design of their instrument and tested it in preclinical settings. The process involved integrating optical fibers with ultrasound probes, exploring various ultrasound transducers, and improving the multimodal technology so that measurements were stable, accurate, and reproducible while collecting data at the bedside. The resulting instrumentation now enables researchers to study the anatomy of the placenta while also collecting detailed functional information about placenta blood flow and oxygenation, capabilities that existing commercially devices do not have, the researchers say.

Because the placenta is located far below the body’s surface, one of the key technical challenges addressed by the researchers was reducing background noise in the opto-electronic system. Light is scattered and absorbed when it travels through thick tissues, and the key for success was to reduce background interference so that the small amount of light that penetrates deep into the placenta and then returns is still large enough for a high-quality measurement.

In a pilot clinical study conducted by the researchers, 24 pregnant patients in their third trimester were given supplemental oxygen for a short time period, creating placental hyperoxia. Using the device, the team collected measurements of the placenta’s oxygenated and deoxygenated blood concentrations before and during hyperoxia; the results demonstrated that the device could be used to study placental function in real time. The research also provided new insights into the relationship between blood flow and maternal vascular malperfusion, which occurs when blood flow into the placenta is impeded.

While the device is still in development, the researchers are currently refining their instrument to make it more user-friendly and to allow it to collect data faster. The team is also currently working on larger studies, including recently data from patients during their second trimester, and they are also interested in studying different regions of the placenta. And because there are many unanswered clinical questions about the placenta, the biggest potential of this work for the researchers is in providing a way to start answering those questions.

“What was exciting is that, not only did we get an instrument to probe deeper than commercial devices, but we also obtained an early signal that hyperoxygenation experiments can differentiate a healthy placenta from a diseased placenta,” said Nadav Schwartz from the University of Pennsylvania. “Without being able to study the placenta directly, we are relying on very indirect science. This is a tool that helps us study the underlying physiology of pregnancy so we can more strategically study interventions that can help support good pregnancy outcomes.”

Related Links:
University of Pennsylvania

Gold Supplier
Premium Ultrasound Scanner
Vertical Bucky
High Frequency X-Ray Generator
Fixed Height Radiographic Table

Print article



view channel
Image: MRI scan showing the fetus and placental compartments (Photo courtesy of WUSTL)

New MRI Method Automatically Detects Placental Health during Pregnancy

Early monitoring of the placenta can improve detection and prevention of pregnancy complications, such as preterm birth, fetal growth disorders and preeclampsia. Currently, standard MRI analysis methods... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

General/Advanced Imaging

view channel
Image: CZT gamma detector for SPECT imaging (Photo courtesy of Kromek)

Low-Dose Molecular Breast Imaging (MBI) Could Improve Cancer Detection in Dense Breast Tissue

Traditional mammography is often less able to clearly image tumors due to the density of the breast tissue. Molecular breast imaging (MBI) technology uses a radioactive tracer that ‘lights up’ areas of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.