We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Imaging Modality Combining Ultrasound and Supercomputing Could Revolutionize Breast Cancer Detection

By MedImaging International staff writers
Posted on 17 May 2022
Print article
Image: QUSTom is the first project that will use supercomputing to detect tumors (Photo courtesy of Pexels)
Image: QUSTom is the first project that will use supercomputing to detect tumors (Photo courtesy of Pexels)

Breast cancer is the most frequently diagnosed type of tumor in the world, with 2.3 million women diagnosed in 2020 and 700,000 deaths due to this disease that same year. Early detection is therefore essential, since, if successful, survival at five years after diagnosis is as high as 90%. Mammography is one of the most widely used methods to detect breast cancer and has saved millions of lives. However, there are studies that claim that it can give false positives and alert of a possible tumor that is not found later in the screening phase. Now, a new imaging modality aims to improve breast cancer diagnosis and potentially replace mammograms.

The Barcelona Supercomputing Center (BSC, Barcelona, Spain) is coordinating QUSTom (Quantitative Ultrasound Stochastic Tomography), a new European project that aims to introduce a new medical imaging modality based for the first time on ultrasound and supercomputing, which will complement or even replace current techniques that use X-rays such as mammograms. The consortium brings together physicists, engineers, exploitation experts and radiologists with the aim of applying the technology to patients for radiation-free, accurate and scalable breast cancer diagnosis. The technology will be completely safe for patients as it does not use any type of radiation. It will also offer a superior image quality and better monitoring of tumors, among other advantages.

The algorithms that will be developed to obtain the medical images will offer two types of images simultaneously: the image of the patient's tissue, and the image of its associated uncertainty, which shows, pixel by pixel, how reliable the information is. The project also incorporates concepts such as multimodal imaging and real 3D imaging, which is an unprecedented combination in ultrasound breast imaging. These algorithms, which will be developed using supercomputers within the BSC, will be inspired by others that have proven effective in completely different research areas such as the analysis of the earth's subsurface.

"QUSTom poses an excellent opportunity to bring ultrasound imaging to the next level. Interestingly enough, the revolution that we propose comes, not just from an extraordinary imaging device, but from the imaging algorithms used to generate unprecedented ultrasound images. Images that we can fairly compare to those obtained with MRI,” said BSC researcher and project coordinator Josep de la Puente. "We are very ambitious and plan for validation of the technology within the project's lifetime. We are also working on a roadmap towards its actual exploitation, we don't want this technology sitting in the lab. We are leaving no stone unturned towards satisfying what is, in our eyes, an urgent need for the female population worldwide. The challenge is huge but all of our partners and associates are extraordinarily committed and motivated towards our mission."

Related Links:
Barcelona Supercomputing Center 

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Diagnostic Ultrasound System
MS1700C
New
3T MRI Scanner
MAGNETOM Cima.X
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90

Print article

Channels

MRI

view channel
Image: Late gadolinium enhancement distinguishes which hypertrophic cardiomyopathy patients will benefit from urgent interventions (Photo courtesy of 123RF)

Enhanced Cardiovascular MRI Predicts Heart Risk in Children with Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is the most prevalent genetic cardiovascular disorder and a leading cause of sudden cardiac death in young people, with a yearly mortality rate of 1%. However, 10% to... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: AI-enabled analysis of images meant to catch one disease can reveal others (Photo courtesy of 123RF)

AI Tool Offers Opportunistic Screening for Heart Disease Using Repurposed CT Scans

In the field of medical imaging, the term "opportunistic screening" refers to the repurposing of existing medical images by radiologists to diagnose illnesses beyond what the scan was originally meant to find.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.