We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
CIRS

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI Automatically Segments Kidneys and Measures Total Kidney Volumes Using Only 3D Ultrasound Images

By MedImaging International staff writers
Posted on 02 May 2022
Print article
Image: A first-ever study has applied deep learning to 3D US in ADPKD (Photo courtesy of Pexels)
Image: A first-ever study has applied deep learning to 3D US in ADPKD (Photo courtesy of Pexels)

Total kidney volume (TKV) is the most important imaging biomarker for quantifying the severity of autosomal-dominant polycystic kidney disease (ADPKD). 3D ultrasound (US) can accurately measure kidney volume compared to 2D US; however, manual segmentation is tedious and requires expert annotators. Now, the first study applying deep learning to 3D US in ADPKD has shown promising performance for auto-segmentation of kidneys using 3D US to measure TKV, close to human tracing and MRI measurement.

The imaging and analysis method developed by researchers at the Mayo Clinic (Rochester, MN, USA) could be useful in a number of settings, including pediatric imaging, clinical studies, and longitudinal tracking of patient disease progression. ADPKD is a genetic disorder in which cysts develop within the kidneys, causing kidneys to enlarge and lose function over time. Over time, kidney and liver volumes steadily increase, resulting in renal function decline. There is no cure for PKD, but dialysis, kidney transplant, blood pressure medication, and surgical removal of cysts are treatment options. If diagnosed and monitored at an early stage, better treatment options are possible.

Measuring kidney and liver volumes are some of the most important biomarkers in quantifying the severity of ADPKD and are used in clinical decision making. Apart from MRI and CT imaging, ultrasound (US) imaging is popular and widely used to diagnose acute and chronic kidney diseases. Imaging features computed from US data using deep CNNs improved the classification of children with congenital abnormalities of the kidney and urinary tract and controls. However, the computation of these anatomic measures typically involves manual or semi-automatic segmentation of kidneys in US images, requiring multiple human annotators, increasing inter-operator variability, reducing reliability, and limiting utility in clinical medicine. Automatic kidney segmentation in US images with AI has not progressed recently. Thus, there is a need for further development of US-based kidney imaging and segmentation to understand the problems and improve the performance of the AI models in segmentation.

In the first study to measure total kidney volume from 3D US images using deep learning, the researchers used axially acquired 3D US-kidney images in 22 ADPKD patients where each patient and each kidney were scanned three times, resulting in 132 scans that were manually segmented. The researchers trained a convolutional neural network to segment the whole kidney and measure TKV. All patients were subsequently imaged with MRI for measurement comparison. The researchers found that the method showed promising segmentation performance for auto-segmentation of kidneys and calculating total kidney volume, close to human tracing, and measurement. The researchers also compared its performance with MRI, and found that it achieved good performance, suggesting it may be useful in populations where MRI is more challenging, such as children.

Related Links:
Mayo Clinic


Print article
Sun Nuclear
Radcal

Channels

Radiography

view channel
Image: CE-marked and FDA-cleared ExacTrac Dynamic enables the delivery of precision radiotherapy (Photo courtesy of Brainlab)

Next-Gen Technology Enables Precision Radiotherapy with “On-The-Fly” X-Ray Confirmation

Deep Inspiration Breath Hold (DIBH) is a well-established technique and standard of care in treating breast cancer with radiation therapy. When a patient takes a deep breath, the distance between the heart... Read more

MRI

view channel
Image: fMRI can be used as non-invasive method for predicting complications in chronic liver disease (Photo courtesy of Pexels)

Functional MRI (fMRI) Offers Non-Invasive Method for Risk Assessment in Liver Disease

In a recent study, a team of scientists has shown that functional magnetic resonance imaging (fMRI) can be used as a non-invasive method for predicting complications in chronic liver disease.... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Image: Global diagnostic imaging market is driven by technological advancements (Photo courtesy of Pexels)

Global Diagnostic Imaging Market to Surpass USD 33 Billion by 2026

The global diagnostic imaging market is one of the most critical segments of the healthcare sector. Medical imaging helps in early detection and diagnosis of diseases at a stage when they can be easily... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.