We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Quantitative Ultrasound Technique Assesses Lung Health

By MedImaging International staff writers
Posted on 26 Oct 2020
Print article
A new ultrasound technique can quantify lung scarring and pulmonary edema (PE), providing a more affordable option than computerized tomography (CT).

Developed by researchers at the University of North Carolina (UNC; Chapel Hill, USA) and North Carolina State University (NCSU; Raleigh, USA), the innovative lung assessment method uses ultrasound transducer data to map the micro-architecture of lung parenchyma. A smart computational model extrapolates the multiple scattering echoes of the ultrasound waves to calculate the density of healthy alveoli in the lungs, and in turn offer a quantitative assessment of idiopathic pulmonary fibrosis (IPF) tissue in the lungs, as well as PE levels.

In order to verify the hypothesis that in a fibrotic lung, the thickening of the alveolar wall reduces the amount of air, thus minimizing scattering events, the researchers induced IPF in Sprague-Dawley rats by instilling bleomycin into the airway. After three weeks, a 128-element linear array transducer operating at 7.8 MHz was used to evaluate mean free path level and backscatter frequency shift (BFS). The results showed significant differences between control and fibrotic rats in both values. The study was published on October 15, 2020, in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

“Automated quantitative assessment would allow the technology to be used by personnel with minimal training, and would allow healthcare providers to compare data across time. Caregivers would be able to tell if a patient’s edema is getting better or worse,” said co-senior author Marie Muller, PhD, of NCSU. “Being able to monitor pulmonary edema in patients with heart failure would also be very useful. This is often done by assessing fluctuations in a patient’s body weight in order to estimate how much fluid has collected in the patient’s lungs, which is not as specific as we’d like it to be.”

The speed at which sound waves propagate within tissue is determined by the density and stiffness of the tissue, rather than by characteristics of the sound waves themselves, and is inversely proportional to tissue density and directly proportional to stiffness of the tissue; i.e., the denser the tissue, the slower the propagation velocity, while the stiffer the tissue, the higher the velocity. Propagation speed is slowest through air and fat, and fastest through muscle and bone. Ultrasound propagation in a highly scattering regime follows a diffusion process.

Related Links:
University of North Carolina
North Carolina State University


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Dose Area Product Meter
VacuDAP
New
DR Flat Panel Detector
1500L
New
Ultrasound Software
UltraExtend NX

Print article

Channels

Nuclear Medicine

view channel
Image: PET/CT of a 60-year-old male patient with clinical suspicion of lung cancer (Photo courtesy of EJNMMI Physics)

Early 30-Minute Dynamic FDG-PET Acquisition Could Halve Lung Scan Times

F-18 FDG-PET scans are a way to look inside the body using a special dye, and these scans can be either static or dynamic. Static scans happen 60 minutes after the dye is administered into the body, showing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.