We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Focal Ultrasound Regenerates Alzheimer's Patients’ Brains

By MedImaging International staff writers
Posted on 22 Jan 2020
Print article
Image: Clinical sonication can help reverse Alzheimer’s disease (Photo courtesy of Storz Medical)
Image: Clinical sonication can help reverse Alzheimer’s disease (Photo courtesy of Storz Medical)
A new navigated ultrasound focal brain therapy can activate neurons to help regenerate brain functions in Alzheimer's disease (AD), claims a new study.

Developed at the Medical University of Vienna (MedUni; Austria), Storz Medical (Tägerwilen, Switzerland), the Center for Movement Disorders (Bad Krozingen, Germany), transcranial pulse stimulation (TPS) is a clinical sonication technique based on ultrashort ultrasound pulses which markedly differ from existing focused ultrasound techniques, as the pulse emitted by the ultrasound device is 3-5 mm wide, and approximately three cm long. An accurate "map" is first of all made of the patient's brain using magnetic resonance imaging (MRI).

The TPS pulse causes short-term membrane changes in the brain cells, affecting the concentration of transmitters and other biochemical substances. This results in activation of brain neurons and the development of compensatory networks that improve brain function. In a clinical pilot study involving 35 patients with AD, neuropsychological scores improved significantly after TPS treatment, and the improvement lasted up to three months, correlating with an upregulation of the memory network, as evidenced by functional MRI (fMRI) data. The study was published on December 23, 2019, in Advanced Science.

“For the first time in the world, TPS enables us to penetrate into all areas of the brain by means of an ultrasound pulse delivered directly to the skull in a non-invasive, painless procedure, during which the patient is fully conscious, and to specifically target particular areas of the brain and stimulate them,” said lead author Roland Beisteiner, MD, of MEdUni. “It is like starting up an old engine again. Those neurons that are still activatable show marked improvements after the procedure. The decline in performance is slowed down.”

TPS was delivered using the Storz Neurolith system using an ergonomic handpiece that minimizes hand fatigue, facilitating treatment when working directly on the patient. A coupling surface adapts to any shape of head, making the treatment with focused pulses simple and efficient. Biological effects of TPS include increased cell permeability, stimulation of mechanosensitive ion channels, release of nitric oxide (which leads to vasodilation), increased metabolic activity, stimulation of vascular growth factors (VEGF 3 and 4).

Related Links:
Medical University of Vienna
Storz Medical
Center for Movement Disorders


Gold Supplier
Conductive Gel
Tensive
Gold Supplier
Ultrasound System
FUTUS LE
Portable DR Flat Panel Detector
VIVIX-S 1012N
Interventional Robot
ANT-X

Print article
Radcal

Channels

Radiography

view channel
Image: Intelligent NR provides high-quality diagnostic images containing significantly less grainy noise (Photo courtesy of Canon)

AI-Driven DR System Produces Higher Quality Images While Limiting Radiation Doses in Pediatric Patients

Ionizing radiation is a fundamental element in producing diagnostic X-rays, yet it's widely acknowledged for its cancer risk potential. Digital projection radiography, a vital imaging modality, accounts... Read more

MRI

view channel
Image: The researchers are using MRI-guided radiation therapy that pairs daily MRIs with radiation treatment (Photo courtesy of Sylvester)

AI Technique Automatically Traces Tumors in Large MRI Datasets to Guide Real-time Glioblastoma Treatment

Treating glioblastoma, a prevalent and aggressive brain cancer, involves the use of radiation therapy guided by CT imaging. While this method is effective in targeting radiation, it doesn't provide real-time... Read more

Nuclear Medicine

view channel
Image: A novel PET radiotracer facilitates early, noninvasive detection of IBD (Photo courtesy of Karmanos)

New PET Radiotracer Aids Early, Noninvasive Detection of Inflammatory Bowel Disease

Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, is an inflammatory condition of the gastrointestinal tract affecting roughly seven million individuals globally.... Read more

General/Advanced Imaging

view channel
Image: Artificial intelligence predicts therapy responses for ovarian cancer (Photo courtesy of 123RF)

AI Model Combines Blood Test and CT Scan Analysis to Predict Therapy Responses in Ovarian Cancer Patients

Ovarian cancer annually impacts thousands of women, with many diagnoses occurring at advanced stages due to subtle early symptoms. High-grade serous ovarian carcinoma, which accounts for 70-80% of ovarian... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Attendees can discover innovative products and technology in the RSNA 2023 Technical Exhibits (Photo courtesy of RSNA)

RSNA 2023 Technical Exhibits to Offer Innovations in AI, 3D Printing and More

The 109th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA, Oak Brook, IL, USA) to be held in Chicago, Nov. 26 to 30 is all set to offer a vast array of medical... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.