We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Dolphin Echolocation Could Advance Medical Ultrasound

By MedImaging International staff writers
Posted on 11 Jun 2018
Print article
Increasing our understanding of the dolphin echolocation and communication signals could pave the way for sharper image quality on ultrasound technology.

Researchers at the Lund University (Sweden) department of biomedical engineering built a measuring instrument composed of 47 hydrophones capable of capturing a complete cross-section of dolphin sonar beams transmitted over many different frequencies. Dolphin sounds were then recorded in Kolmården Wildlife Park (Sweden) and in other wildlife parks located in the Bahamas, Honduras, and California (USA). The recordings revealed that dolphins actually emit two intertwined ultrasound beam components at different frequencies, and with slightly different timing.

Calculations revealed that the sound frequency is higher further up in the beam, producing a lighter echo within that area. According to the researchers, the slightly time separated signal components may enable the dolphin to quickly gauge the speed of approaching or fleeing prey, as variations in frequency provide more precise information on the position of an object. Working with researchers at the Lund Centre for Mathematical Sciences, they then developed a mathematical algorithm to disentangle and read the overlapping signals.

The algorithm effectively identified closely located Gaussian shaped transient pulses, even in heavy disruptive noise, automatically detecting and counting the number of transients, and giving the center times and center frequencies of all components. The researchers claim that the algorithm can increase understanding of dolphin communication, drive improvement is sonar devices and echosounders, and could also potentially be used to measure the thickness of organ membranes deep inside the human body. The study was published on May 22, 2018, in The Journal of the Acoustical Society of America.

“High and low frequencies are useful for different things. Sounds with low frequencies spread further under water, whereas sounds with high frequencies can provide more detailed information on the shape of the object,” said senior author Josefin Starkhammar, PhD. “It works almost like a magic formula! Suddenly we can see things that remained hidden with traditional methods. We could copy the principle of using sound beams whose frequency content changes over the cross-section.”

Echolocation is a biological ability to locate objects through sound waves. As Dolphins lack vocal cords, they produce sounds from the nasal air sacs, the blowhole, the larynx, the lungs, and the melon, an organ located in the upper inner area of the head filled with low-density lipids. For echolocation, dolphins emit ultrasounds called “clicks” in the nasal passages. The melon then groups the sounds into beams and amplifies the resonance. Sound waves bounce back from objects in the water to the lower jaw, with the teeth of dolphins work like antennas to receive the signals. The intensity, pitch, and time that it takes the echo to return to the dolphin provide information about the target.

Related Links:
Lund University

New
Gold Supplier
IMRT Thorax Phantom
CIRS Model 002LFC
Gold Supplier
Conductive Gel
Tensive
Liquid Marker for Preoperative Breast Localization
CARBO-REP
New
Lead Apron
Standard Regular Vest

Print article
Sun Nuclear -    Mirion

Channels

Radiography

view channel
Image: The AI model improves tumor removal accuracy during breast cancer surgery (Photo courtesy of UNC School of Medicine)

AI Model Analyzes Tumors Removed Surgically in Real-Time

During breast cancer surgery, the surgeon removes the tumor, also known as a specimen, along with a bit of the adjacent healthy tissue to ensure all cancerous cells are excised. This specimen is then X-rayed... Read more

MRI

view channel
Image: MRI screen-detected breast cancers have been found to be most often invasive cancers (Photo courtesy of 123RF)

MRI Screen-Detected Breast Cancers Are Mostly Invasive

Annual breast MRI screening is advised for patients with a lifetime breast cancer risk exceeding 20%. There exists robust data about the features of mammographic screen-detected breast cancers, although... Read more

Nuclear Medicine

view channel
Image: An AI model can evaluate brain tumors on PET (Photo courtesy of Freepik)

AI Model for PET Imaging Determines Patient Response to Brain Tumor Treatments

The assessment of changes in metabolic tumor volume (MTV) through PET scans using specific radiotracers like F-18 fluoroethyl tyrosine (FET) plays a vital role in evaluating the treatment response in patients... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.