We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




Generative AI Model Significantly Reduces Chest X-Ray Reading Time

By MedImaging International staff writers
Posted on 20 Mar 2025
Image: Examples of chest radiograph interpretations with and without AI–generated reports (Photo courtesy of Radiology, DOI: 10.1148/radiol.241646)
Image: Examples of chest radiograph interpretations with and without AI–generated reports (Photo courtesy of Radiology, DOI: 10.1148/radiol.241646)

The prompt and accurate interpretation of radiologic images is critical due to its significant impact on patient outcomes, as errors in interpretation can lead to changes in clinical management. Chest radiography is one of the most frequently performed radiologic exams, but its interpretation requires a high level of expertise and considerable time. Although radiologists are highly accurate, their interpretations often face scalability challenges due to the growing volume of imaging studies. This results in an increased workload, delays in diagnosis, disruptions in clinical workflows, and an increased risk of misinterpretation. Multimodal generative artificial intelligence (AI) technologies, which are capable of processing and generating diverse data types, including both images and text, hold the potential to advance radiology. A new study has evaluated the clinical value of a domain-specific multimodal generative AI model for interpreting chest radiographs, with the aim of improving the radiology workflow.

Researchers at Mass General Brigham (Boston, MA, USA), along with their collaborators, carried out a retrospective, sequential, multireader, multicase reader study. They used 758 chest radiographs from a publicly available dataset (2009-2017) to assess the effectiveness of AI-generated reports. Five radiologists interpreted the chest radiographs in two sessions: one without AI-generated reports and the other with AI-generated preliminary reports. Various factors, including reading times, reporting agreement (RADPEER), and quality scores (on a five-point scale), were assessed by two experienced thoracic radiologists. These metrics were compared between the two sessions conducted from October to December 2023. A generalized linear mixed model was employed to analyze the reading times, report agreement, and quality scores. Additionally, a subset of 258 chest radiographs was examined to evaluate the factual correctness of the reports, comparing the sensitivities and specificities between the two sessions using the McNemar test.

The study, published in Radiology, revealed that AI-generated reports reduced the average reading time for chest X-rays (CXRs) by 42% compared to radiologists' unassisted evaluation (19.8 seconds vs. 34.2 seconds). In the subset analysis of 258 cases, the researchers found that AI-generated reports resulted in nearly a 10% increase in sensitivity for detecting pleural lesions (87.4% vs. 77.7%) and a more than 6% increase in sensitivity for identifying a widened mediastinum (90.8% vs. 84.3%). Without AI assistance, the researchers observed a wide range of sensitivities (54.2% to 80.7%) and specificities (84.9% to 93.4%) among the five radiologists for detecting abnormalities on CXRs. However, when AI-generated reports were used, the range for sensitivity and specificity was narrower. The sensitivity rates ranged from 71.1% to 80.8%, while specificity ranged from 85.2% to 87.3%. The researchers concluded that the use of a domain-specific multimodal generative AI model enhanced both the efficiency and quality of radiology report generation.

High-Precision QA Tool
DEXA Phantom
40/80-Slice CT System
uCT 528
Digital Color Doppler Ultrasound System
MS22Plus
Post-Processing Imaging System
DynaCAD Prostate

Channels

Ultrasound

view channel
Image: The super-resolution lymphatic imaging system could diagnose and monitor patients with lymphatic disease (Photo courtesy of Adobe Stock)

Portable Imaging Scanner to Diagnose Lymphatic Disease in Real Time

Lymphatic disorders affect hundreds of millions of people worldwide and are linked to conditions ranging from limb swelling and organ dysfunction to birth defects and cancer-related complications.... Read more

Nuclear Medicine

view channel
Image: This artistic representation illustrates how the drug candidate NECT-224 works in the human body (Photo courtesy of HZDR/A. Gruetzner)

Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies

Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.