We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Diagnoses Wrist Fractures As Well As Radiologists

By MedImaging International staff writers
Posted on 04 Mar 2024
Print article
Image: AI algorithms, particularly CNNs, can accurately detect wrist fractures from plain X-rays (Photo courtesy of Adobe Stock)
Image: AI algorithms, particularly CNNs, can accurately detect wrist fractures from plain X-rays (Photo courtesy of Adobe Stock)

In the field of medical imaging, conventional radiography is the primary method for diagnosing wrist fractures. However, challenges such as suboptimal positioning, technique, patient cooperation, and interpretational errors, often stemming from clinician inexperience, fatigue, or poor viewing conditions, can impact the accuracy of these radiographs. The most frequent interpretational mistakes in emergency departments (EDs) are missed fractures, leading to treatment delays. Physicians, particularly those with limited training in musculoskeletal imaging, often struggle to identify wrist fractures, especially when the signs are subtle. The advancement of deep learning (DL) in automating wrist fracture diagnosis could significantly assist physicians, and recent developments have seen substantial improvements in DL models' image classification error rates. Now, a new meta-analysis reveals that artificial intelligence (AI) algorithms, especially convolutional neural networks (CNNs), are highly effective in detecting wrist fractures from plain X-rays, performing on par with trained healthcare professionals.

The study by researchers at the University Hospital of Southern Denmark (Odense, Denmark) involved analyzing various medical databases from January 2012 to March 2023. The team identified six studies that applied deep-learning AI for diagnosing radial and ulnar fractures using radiographs. The studies collectively included 33,026 X-ray images. Each study employed CNN models trained on a dataset of images and compared their diagnostic accuracy against healthcare experts specializing in fracture diagnostics. The focus on wrist fractures in this meta-analysis was due to their high rate of misdiagnosis in EDs, where their detection on X-rays can be complex.

A comprehensive review of these studies indicated that CNNs, when benchmarked against the consensus of healthcare experts, achieved a sensitivity rate of 92% and a specificity rate of 93%. This finding positions CNN as an effective preliminary tool for reviewing radiographs, potentially reducing missed fractures when followed up by a healthcare professional's examination. However, the study acknowledges the need for further research, emphasizing the importance of external dataset testing, uniform methodologies, and independent expert reference standards to fully ascertain the effectiveness of diagnostic AI algorithms. Future studies should also focus on patient outcomes as a reference point to understand the real-world impact of CNNs in clinical settings.

“For clinicians, AI could potentially be used to enhance diagnostic confidence, especially in fields of radiology. AI algorithms may be particularly useful for less experienced clinicians,” concluded the researchers.

Related Links:
University Hospital of Southern Denmark 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
X-Ray QA Meter
Piranha CT
Computed Tomography (CT) Scanner
Aquilion Serve SP
Under Table Shield
3 Section Double Pivot Under Table Shield

Print article
Radcal

Channels

MRI

view channel
Image: The emerging role of MRI alongside PSA testing is redefining prostate cancer diagnostics (Photo courtesy of 123RF)

Combining MRI with PSA Testing Improves Clinical Outcomes for Prostate Cancer Patients

Prostate cancer is a leading health concern globally, consistently being one of the most common types of cancer among men and a major cause of cancer-related deaths. In the United States, it is the most... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.