We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Diagnoses Wrist Fractures As Well As Radiologists

By MedImaging International staff writers
Posted on 04 Mar 2024
Image: AI algorithms, particularly CNNs, can accurately detect wrist fractures from plain X-rays (Photo courtesy of Adobe Stock)
Image: AI algorithms, particularly CNNs, can accurately detect wrist fractures from plain X-rays (Photo courtesy of Adobe Stock)

In the field of medical imaging, conventional radiography is the primary method for diagnosing wrist fractures. However, challenges such as suboptimal positioning, technique, patient cooperation, and interpretational errors, often stemming from clinician inexperience, fatigue, or poor viewing conditions, can impact the accuracy of these radiographs. The most frequent interpretational mistakes in emergency departments (EDs) are missed fractures, leading to treatment delays. Physicians, particularly those with limited training in musculoskeletal imaging, often struggle to identify wrist fractures, especially when the signs are subtle. The advancement of deep learning (DL) in automating wrist fracture diagnosis could significantly assist physicians, and recent developments have seen substantial improvements in DL models' image classification error rates. Now, a new meta-analysis reveals that artificial intelligence (AI) algorithms, especially convolutional neural networks (CNNs), are highly effective in detecting wrist fractures from plain X-rays, performing on par with trained healthcare professionals.

The study by researchers at the University Hospital of Southern Denmark (Odense, Denmark) involved analyzing various medical databases from January 2012 to March 2023. The team identified six studies that applied deep-learning AI for diagnosing radial and ulnar fractures using radiographs. The studies collectively included 33,026 X-ray images. Each study employed CNN models trained on a dataset of images and compared their diagnostic accuracy against healthcare experts specializing in fracture diagnostics. The focus on wrist fractures in this meta-analysis was due to their high rate of misdiagnosis in EDs, where their detection on X-rays can be complex.

A comprehensive review of these studies indicated that CNNs, when benchmarked against the consensus of healthcare experts, achieved a sensitivity rate of 92% and a specificity rate of 93%. This finding positions CNN as an effective preliminary tool for reviewing radiographs, potentially reducing missed fractures when followed up by a healthcare professional's examination. However, the study acknowledges the need for further research, emphasizing the importance of external dataset testing, uniform methodologies, and independent expert reference standards to fully ascertain the effectiveness of diagnostic AI algorithms. Future studies should also focus on patient outcomes as a reference point to understand the real-world impact of CNNs in clinical settings.

“For clinicians, AI could potentially be used to enhance diagnostic confidence, especially in fields of radiology. AI algorithms may be particularly useful for less experienced clinicians,” concluded the researchers.

Related Links:
University Hospital of Southern Denmark 

Medical Radiographic X-Ray Machine
TR30N HF
Diagnostic Ultrasound System
DC-80A
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Post-Processing Imaging System
DynaCAD Prostate

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.