We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Outperforms Human Readers in Detecting Lung Nodules on X-Rays

By MedImaging International staff writers
Posted on 01 Feb 2024
Print article
Image: A new study tested a variety of AI algorithms head-to-head under similar conditions (Photo courtesy of 123RF)
Image: A new study tested a variety of AI algorithms head-to-head under similar conditions (Photo courtesy of 123RF)

Currently, over 150 artificial intelligence (AI)-based software products are available in the European market for radiology, with many addressing similar use cases. This makes it challenging for radiology departments to determine which software is most suitable for their needs. While software performance is a crucial factor in the procurement process, public data are scarce on the performance of these products. Clinical centers often lack the resources and personnel to thoroughly evaluate and compare multiple products before making a purchase. To address this issue, an initiative called Project AIR has been launched that aims to enhance market transparency for AI in radiology. Project AIR researchers have compiled a verified database of medical images for various clinical uses. This database allows for the comparative testing of multiple AI algorithms.

Now, in the first tests of the Project AIR concept, researchers discovered that out of seven AI algorithms trialed for detecting lung nodules in X-rays, four surpassed human readers in performance, while two algorithms for bone age prediction did not meet expectations. For testing the Project AIR concept, a team that included researchers from Radboud University (Nijmegen, the Netherlands) invited AI developers to participate. Between June 2022 and January 2023, nine products from eight vendors were validated: two for bone age prediction and seven for lung nodule assessment (one vendor participated in both categories). The team observed that the two algorithms for bone age analysis, Visiana, and Vuno, demonstrated excellent correlation with the reference standard, achieving r correlation coefficients of 0.987-0.989 (with 1 indicating perfect agreement). In lung nodule analysis, there was a more significant variation in performance, with human readers averaging an Area Under the Curve (AUC) of 0.81. The AI algorithms from Annalise.ai, Lunit, Milvue, and Oxipit showed superior performance, with AUCs of 0.90, 0.93, 0.86, and 0.88, respectively. The next tests of the Project AIR concept will focus on AI algorithms for fracture detection.

“We have shown the feasibility of the Project AIR methodology for external validation of commercial artificial intelligence (AI) products in medical imaging,” noted the researchers. “It is conceivable that in the future, radiology departments will require vendors to participate in transparent and comparative evaluations as a prerequisite for purchasing AI products.”

Related Links:
Radboud University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
LED-Based X-Ray Viewer
Dixion X-View
New
40/80-Slice CT System
uCT 528
Radiation Therapy Treatment Software Application
Elekta ONE

Print article

Channels

MRI

view channel
Image: Late gadolinium enhancement distinguishes which hypertrophic cardiomyopathy patients will benefit from urgent interventions (Photo courtesy of 123RF)

Enhanced Cardiovascular MRI Predicts Heart Risk in Children with Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is the most prevalent genetic cardiovascular disorder and a leading cause of sudden cardiac death in young people, with a yearly mortality rate of 1%. However, 10% to... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: AI-enabled analysis of images meant to catch one disease can reveal others (Photo courtesy of 123RF)

AI Tool Offers Opportunistic Screening for Heart Disease Using Repurposed CT Scans

In the field of medical imaging, the term "opportunistic screening" refers to the repurposing of existing medical images by radiologists to diagnose illnesses beyond what the scan was originally meant to find.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.