We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Novel AI Tool Accurately Detects and Characterized Microcalcifications on Mammography

By MedImaging International staff writers
Posted on 01 Jan 2024
Print article
Image: AI modeling detects and classifies breast microcalcifications (Photo courtesy of 123RF)
Image: AI modeling detects and classifies breast microcalcifications (Photo courtesy of 123RF)

Breast cancer screening through mammography is crucial for early detection, yet the demand for mammography services surpasses the capacity of radiologists. Artificial intelligence (AI) can assist in evaluating microcalcifications in mammography scans. A team of researchers has now developed and tested an AI model that can accurately detect and characterize microcalcifications in mammography scans.

In the research conducted at IEO European Institute of Oncology IRCCS (Milan, Italy), three expert radiologists annotated a dataset of 1,000 patients and 1,986 mammograms using histology-based ground truth. The dataset was partitioned for training, validation, and testing. Of the total, 389 groups of microcalcifications were deemed malignant while 611 were benign. The team then trained and evaluated three neural networks (AlexNet, ResNet18, and ResNet34) using specific metrics including receiver operating characteristics area under the curve (AUC), sensitivity, and specificity.

The team evaluated the neural networks in their ability to detect and classify microcalcifications and found that AlexNet delivered the best overall performance among the three neural networks. The researchers also found that AlexNet had a negative predictive value of the three networks in detection (0.94) and classification (0.88). The study highlights the importance of developing reliable deep-learning models possibly be applied to breast cancer screening. Based on their findings, the research team has suggested that these models offer the potential to improve the work of breast radiologists, particularly in breast cancer screening programs.

Related Links:

Gold Member
Solid State Kv/Dose Multi-Sensor
Ultrasound Table
Powered Ultrasound Table-Flat Top
Color Doppler Ultrasound System
Digital Radiography Generator
meX+20BT lite

Print article



view channel
Image: The emerging role of MRI alongside PSA testing is redefining prostate cancer diagnostics (Photo courtesy of 123RF)

Combining MRI with PSA Testing Improves Clinical Outcomes for Prostate Cancer Patients

Prostate cancer is a leading health concern globally, consistently being one of the most common types of cancer among men and a major cause of cancer-related deaths. In the United States, it is the most... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.