We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm As Good As Human Readers at Screening Mammograms

By MedImaging International staff writers
Posted on 06 Sep 2023
Print article
Image: AI performs comparably to human readers of mammograms (Photo courtesy of 123RF)
Image: AI performs comparably to human readers of mammograms (Photo courtesy of 123RF)

Mammographic screening, while valuable, may not detect all instances of breast cancer. False-positive results can lead to unnecessary imaging and biopsies for women without cancer. One approach to enhance the sensitivity and specificity of screening mammography is to have two readers interpret each mammogram. Double reading has been shown to increase cancer detection rates by 6 to 15% while maintaining low recall rates. However, implementing this strategy can be challenging during periods of reader shortages due to its labor-intensive nature. Now, a comparative study of the performance of an artificial intelligence (AI) algorithm with human readers of screening mammograms suggests that AI can provide comparable sensitivity and specificity to human readers, potentially serving as a valuable second reader in clinical practice.

Researchers at the University of Nottingham (Nottingham, UK) used a standardized assessment to evaluate the performance of a commercially available AI algorithm in comparison to human readers when interpreting screening mammograms. The evaluation utilized test sets from the Personal Performance in Mammographic Screening (PERFORMS) quality assurance assessment, a program employed by the UK's National Health Service Breast Screening Program (NHSBSP). PERFORMS test sets consist of 60 challenging mammographic exams, including cases with abnormal, benign, and normal findings. Each reader's evaluation of a test mammogram was compared to the AI's ground truth results. The study employed data from two consecutive PERFORMS test sets, totaling 120 screening mammograms, for the evaluation of both human readers and the AI algorithm.

The research team compared the performance of the AI algorithm with that of 552 human readers, comprising 315 (57%) board-certified radiologists and 237 non-radiologist readers, consisting of 206 radiographers and 31 breast clinicians. Each breast in the study was considered individually, with 67% categorized as normal (161/240), 29% as malignant (70/240), and 4% as benign (9/240). The most common malignant mammographic feature observed was masses (64.3%), followed by calcifications (12.9%), asymmetries (11.4%), and architectural distortions (11.4%). The average size of malignant lesions measured 15.5 mm. The study found that there was no significant difference in the performance of AI and human readers in detecting breast cancer in the 120 exams. Human readers demonstrated a mean sensitivity of 90% and specificity of 76%, while AI exhibited comparable sensitivity (91%) and specificity (77%) in comparison to human readers.

"The results of this study provide strong supporting evidence that AI for breast cancer screening can perform as well as human readers," said Yan Chen, Ph.D., professor of digital screening at the University of Nottingham. "It's vital that imaging centers have a process in place to provide ongoing monitoring of AI once it becomes part of clinical practice. There are no other studies to date that have compared such a large number of human reader performance in routine quality assurance test sets to AI, so this study may provide a model for assessing AI performance in a real-world setting."

Related Links:
University of Nottingham 

Gold Supplier
128 Slice CT Scanner
Supria 128
Gold Supplier
Conductive Gel
Tensive
New
Radiology Generator
S Series
New
CT System
Aquilion Lightning 80

Print article
Sun Nuclear -    Mirion

Channels

MRI

view channel
Image: MRI screen-detected breast cancers have been found to be most often invasive cancers (Photo courtesy of 123RF)

MRI Screen-Detected Breast Cancers Are Mostly Invasive

Annual breast MRI screening is advised for patients with a lifetime breast cancer risk exceeding 20%. There exists robust data about the features of mammographic screen-detected breast cancers, although... Read more

Ultrasound

view channel
Image: FloPatch is a revolutionary tool that facilitates real-time precision in IV fluid management in sepsis (Photo courtesy of Flosonics)

Wireless, Wearable Doppler Ultrasound Revolutionizes Precision Fluid Management in Sepsis Care

When a patient comes to the hospital with sepsis, administering intravenous (IV) fluids is usually the first course of action. However, too much IV fluid can do more harm than good, causing additional... Read more

Nuclear Medicine

view channel
Image: An AI model can evaluate brain tumors on PET (Photo courtesy of Freepik)

AI Model for PET Imaging Determines Patient Response to Brain Tumor Treatments

The assessment of changes in metabolic tumor volume (MTV) through PET scans using specific radiotracers like F-18 fluoroethyl tyrosine (FET) plays a vital role in evaluating the treatment response in patients... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.