We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Groundbreaking AI-Based Method Accurately Classifies Cardiac Function and Disease Using Chest X-Rays

By MedImaging International staff writers
Posted on 07 Jul 2023
Print article
Image: An artificial intelligence-based model classifies cardiac functions from chest radiographs (Photo courtesy of Osaka Metropolitan University)
Image: An artificial intelligence-based model classifies cardiac functions from chest radiographs (Photo courtesy of Osaka Metropolitan University)

Valvular heart disease, a leading cause of heart failure, is commonly diagnosed using echocardiography. However, this technique demands specialized expertise, leading to a shortage of proficient technicians. Chest radiography, on the other hand, is a widely used diagnostic method for identifying primarily lung diseases. Even though the heart is visible in chest radiographs or chest X-rays, its potential to detect cardiac function or disease has been largely unexplored until now. Given their widespread use, rapid execution, and high reproducibility, chest X-rays could serve as a supplementary tool to echocardiography for diagnosing cardiac conditions if they could accurately determine cardiac function and disease. Now, an innovative artificial intelligence (AI) tool uses chest X-rays to classify cardiac functions and identify valvular heart disease with unprecedented accuracy.

Scientists at Osaka Metropolitan University (Osaka, Japan) have developed an AI-based model capable of accurately classifying cardiac functions and diagnosing valvular heart diseases using chest X-rays. Given the potential for bias and resultant low accuracy if AI is trained on a single dataset, the team collected a multi-institutional dataset comprising 22,551 chest X-rays and corresponding echocardiograms from 16,946 patients across four facilities between 2013 and 2021. The AI model was trained using chest X-rays as input data and the corresponding echocardiograms as output data, enabling it to learn the features connecting the two datasets.

The AI model succeeded in precisely classifying six selected types of valvular heart disease, with the Area Under the Curve (AUC is a rating index denoting an AI model's capability with a value range from 0 to 1—the closer to 1, the better) ranging from 0.83 to 0.92. The AUC was 0.92 at a 40% cut-off for detecting left ventricular ejection fraction—an essential metric for monitoring cardiac function.

“It took us a very long time to get to these results, but I believe this is significant research,” stated Dr. Daiju Ueda from Osaka Metropolitan University who led the research team. “In addition to improving the efficiency of doctors’ diagnoses, the system might also be used in areas where there are no specialists, in night-time emergencies, and for patients who have difficulty undergoing echocardiography.”

Related Links:
Osaka Metropolitan University 

Gold Supplier
IMRT Thorax Phantom
CIRS Model 002LFC
Gold Supplier
Conductive Gel
Bladder Scanner
Z5 Bladder Scanner
Gold Supplier
128 Slice CT Scanner
Supria 128

Print article
Sun Nuclear -    Mirion



view channel
Image: MRI screen-detected breast cancers have been found to be most often invasive cancers (Photo courtesy of 123RF)

MRI Screen-Detected Breast Cancers Are Mostly Invasive

Annual breast MRI screening is advised for patients with a lifetime breast cancer risk exceeding 20%. There exists robust data about the features of mammographic screen-detected breast cancers, although... Read more


view channel
Image: FloPatch is a revolutionary tool that facilitates real-time precision in IV fluid management in sepsis (Photo courtesy of Flosonics)

Wireless, Wearable Doppler Ultrasound Revolutionizes Precision Fluid Management in Sepsis Care

When a patient comes to the hospital with sepsis, administering intravenous (IV) fluids is usually the first course of action. However, too much IV fluid can do more harm than good, causing additional... Read more

Nuclear Medicine

view channel
Image: An AI model can evaluate brain tumors on PET (Photo courtesy of Freepik)

AI Model for PET Imaging Determines Patient Response to Brain Tumor Treatments

The assessment of changes in metabolic tumor volume (MTV) through PET scans using specific radiotracers like F-18 fluoroethyl tyrosine (FET) plays a vital role in evaluating the treatment response in patients... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.