We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




AI Diagnoses Lung Disease by Analyzing X-Ray Images

By MedImaging International staff writers
Posted on 18 Apr 2023
Image: A neural network can search for lung pathologies on X-ray images (Photo courtesy of Freepik)
Image: A neural network can search for lung pathologies on X-ray images (Photo courtesy of Freepik)

Researchers have developed a neural network that can identify lung pathologies in X-ray images and generate concise verbal descriptions to accompany them. Currently, physicians spend several minutes compiling these captions, but the artificial intelligence (AI) solution reduces this time to around 30 seconds when significant text revision is not needed. In most cases, the radiologist simply needs to confirm the suggested diagnosis—such as fibrosis, an enlarged heart, or a suspected malignant tumor—or lack thereof.

The AI solution developed by researchers from Skoltech (Moscow, Russia) employs state-of-the-art machine vision and computational linguistics models, including GPT-3 small, a precursor to the widely popular GPT-3.5 and GPT-4 models accessible through the ChatGPT bot. The neural network is trained on data consisting of image-text pairs. Potential enhancements to the system include applying it to MRI and CT scans, integrating active learning, and combining it with another neural network to visually emphasize the areas of interest mentioned in the caption. Active learning refers to models that refine their predictions by considering the adjustments made by human reviewers.

“Regular models merely classify, but our neural network leverages advanced machine vision and computer linguistics models to automatically describe X-ray images in words,” said Skoltech research scientist Oleg Rogov. “We compiled our own radiological dictionary to make the model more accurate, specifically where radiological terms and their usage in texts are concerned. Naturally, we also put together a large integrated database of X-ray images for use as training data,” emphasizing that the neural network is only “aware” of those diagnoses that can actually manifest themselves on lung X-rays. The training set was balanced in terms of which diseases are represented.

Related Links:
Skoltech 

Adjustable Mobile Barrier
M-458
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Biopsy Software
Affirm® Contrast
Ultrasonic Pocket Doppler
SD1

Channels

Ultrasound

view channel
Image: The super-resolution lymphatic imaging system could diagnose and monitor patients with lymphatic disease (Photo courtesy of Adobe Stock)

Portable Imaging Scanner to Diagnose Lymphatic Disease in Real Time

Lymphatic disorders affect hundreds of millions of people worldwide and are linked to conditions ranging from limb swelling and organ dysfunction to birth defects and cancer-related complications.... Read more

Nuclear Medicine

view channel
Image: This artistic representation illustrates how the drug candidate NECT-224 works in the human body (Photo courtesy of HZDR/A. Gruetzner)

Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies

Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.