We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Printable X-Ray Detectors to Bring About Step-Change in Imaging Applications

By MedImaging International staff writers
Posted on 06 Apr 2023
Print article
Image: An image of a thin film multi-energy X-ray detector device (Photo courtesy of Exciton Science)
Image: An image of a thin film multi-energy X-ray detector device (Photo courtesy of Exciton Science)

Most X-ray detectors work in one of two energy levels: hard or soft. Hard X-rays are utilized to penetrate dense substances such as bone or rock, whereas soft X-rays are necessary for imaging living matter like tissue and cells safely. Typically, single-energy detection happens in the hard X-ray range of 10 to hundreds of kiloelectron volts (KeV). For detection in the soft window, energy levels below 1 KeV may be required. Occasionally, an X-ray detector must be capable of functioning across both energy levels. Consider the case of searching for tumors in breast tissue. Currently available multi-energy X-ray detectors, constructed from silicon and selenium, can function in both regions, but their energy sensitivity and spatial resolution are restricted. A promising alternative with greater effectiveness and versatility is now available in the form of metal halide perovskites.

The field of imaging applications could witness a significant advancement following the demonstration of a pathway to multi-energy X-ray detection with increased flexibility and sensitivity by researchers at Exciton Science (Melbourne, VIC, Australia). Developed by a team at Monash University (Melbourne, VIC, Australia), the technology is based on solution-processed, printable diodes made utilizing perovskite thin films, a component generally associated with next-generation solar energy devices.

Perovskite materials are known for their crystal structure and can regulate the intensity of X-ray beams passing through matter. They are also cost-effective to produce. When perovskite is incorporated into a diode device, the process of X-ray attenuation creates charges that can be collected to determine the energy and intensity of the X-ray. The latest research has shown that a perovskite-based multi-energy X-ray detector can operate across a wide range of energies, from 0.1 KeV to the 10s of KeV, surpassing the capabilities of traditional multi-energy X-ray detectors. This breakthrough technology has the potential to revolutionize the field of imaging applications.

Perovskite-based devices have previously been demonstrated to detect hard X-rays on a small scale, ranging from millimeters to centimeters. For the first time, researchers have successfully utilized perovskites for soft X-ray detection, with the potential for scaling up to large areas for commercial applications. Furthermore, since the perovskite detectors can be produced as a thin film, they can be integrated with flexible substrates, opening up possibilities for new device shapes and sizes.

“These perovskite-based detectors can provide rapid response times and offer high sensitivities to enable real-time detection and imaging for complex purposes, including disease diagnoses, detection of explosives and identifying food contamination,” said Dr. Babar Shabbir, a Senior Exciton Science Research Fellow and the study’s first author.

“This work showcases that there's a natural extension of perovskites into printed X-ray detectors,” added Professor Jacek Jasieniak of Monash University, an Exciton Science Chief Investigator and the study’s senior author. “They should be cheaper to make, and could also involve modified film form factors, where you need inherent flexibility. It opens up the field to a whole new set of questions about how to use these types of devices.”

Related Links:
Exciton Science
Monash University 

Gold Supplier
Ultrasound Phantom
Multi-Purpose Multi-Tissue Ultrasound Phantom - Model 040GSE
Premium Ultrasound System
RS85 Prestige
X-Ray Wall Stand
Digital X-Ray Flat Panel Detector

Print article
FIME - Informa



view channel
Image: Ezra Flash AI has received 510(k) FDA clearance, enabling roll out of the world’s first 30-minute full body MRI (Photo courtesy of Ezra)

World's First 30 Minute Full Body MRI Scan Offers Fast, Accurate and Affordable Cancer Diagnosis

A cutting-edge artificial intelligence (AI) solution enhances MR image quality, paving the way for a reduction in scan time and consequently, the cost of MRI procedures. This innovation now makes it feasible... Read more


view channel
Image: Attaching microbubbles to macrophages can create high-resolution and sensitive tracking images useful for disease diagnosis (Photo courtesy of Georgia Institute of Technology)

Ultrasound Can Image Immune Cells Enhanced With Microbubbles to Diagnose Early Stage Cancer

Macrophages, a type of white blood cell, protect the human body by surrounding and consuming foreign particles such as bacteria, viruses, and dead cells. Notably, these immune cells tend to gather within... Read more

Nuclear Medicine

view channel
Image: New imaging method offers potential for diagnosing, staging, and treating multiple types of cancer (Photo courtesy of SNMMI)

New Imaging Method Superior for Diagnosing Multiple Types of Cancer

Cancer-associated fibroblasts play a significant role in tumor development, migration, and progression. A subset of these fibroblasts expresses fibroblast activation protein (FAP), a protein prominently... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The global AI-enabled medical imaging solutions market is expected to reach USD 18.36 billion in 2032 (Photo courtesy of Freepik)

Global AI-Enabled Medical Imaging Solutions Market Driven by Need for Early Disease Detection

The AI-enabled medical imaging solutions market is currently in its developmental stages, following the significant role of AI-based tools in combating the COVID-19 pandemic. The pandemic saw an upswing... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.