We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Printable X-Ray Detectors to Bring About Step-Change in Imaging Applications

By MedImaging International staff writers
Posted on 06 Apr 2023
Image: An image of a thin film multi-energy X-ray detector device (Photo courtesy of Exciton Science)
Image: An image of a thin film multi-energy X-ray detector device (Photo courtesy of Exciton Science)

Most X-ray detectors work in one of two energy levels: hard or soft. Hard X-rays are utilized to penetrate dense substances such as bone or rock, whereas soft X-rays are necessary for imaging living matter like tissue and cells safely. Typically, single-energy detection happens in the hard X-ray range of 10 to hundreds of kiloelectron volts (KeV). For detection in the soft window, energy levels below 1 KeV may be required. Occasionally, an X-ray detector must be capable of functioning across both energy levels. Consider the case of searching for tumors in breast tissue. Currently available multi-energy X-ray detectors, constructed from silicon and selenium, can function in both regions, but their energy sensitivity and spatial resolution are restricted. A promising alternative with greater effectiveness and versatility is now available in the form of metal halide perovskites.

The field of imaging applications could witness a significant advancement following the demonstration of a pathway to multi-energy X-ray detection with increased flexibility and sensitivity by researchers at Exciton Science (Melbourne, VIC, Australia). Developed by a team at Monash University (Melbourne, VIC, Australia), the technology is based on solution-processed, printable diodes made utilizing perovskite thin films, a component generally associated with next-generation solar energy devices.

Perovskite materials are known for their crystal structure and can regulate the intensity of X-ray beams passing through matter. They are also cost-effective to produce. When perovskite is incorporated into a diode device, the process of X-ray attenuation creates charges that can be collected to determine the energy and intensity of the X-ray. The latest research has shown that a perovskite-based multi-energy X-ray detector can operate across a wide range of energies, from 0.1 KeV to the 10s of KeV, surpassing the capabilities of traditional multi-energy X-ray detectors. This breakthrough technology has the potential to revolutionize the field of imaging applications.

Perovskite-based devices have previously been demonstrated to detect hard X-rays on a small scale, ranging from millimeters to centimeters. For the first time, researchers have successfully utilized perovskites for soft X-ray detection, with the potential for scaling up to large areas for commercial applications. Furthermore, since the perovskite detectors can be produced as a thin film, they can be integrated with flexible substrates, opening up possibilities for new device shapes and sizes.

“These perovskite-based detectors can provide rapid response times and offer high sensitivities to enable real-time detection and imaging for complex purposes, including disease diagnoses, detection of explosives and identifying food contamination,” said Dr. Babar Shabbir, a Senior Exciton Science Research Fellow and the study’s first author.

“This work showcases that there's a natural extension of perovskites into printed X-ray detectors,” added Professor Jacek Jasieniak of Monash University, an Exciton Science Chief Investigator and the study’s senior author. “They should be cheaper to make, and could also involve modified film form factors, where you need inherent flexibility. It opens up the field to a whole new set of questions about how to use these types of devices.”

Related Links:
Exciton Science
Monash University 

Portable X-ray Unit
AJEX140H
Digital X-Ray Detector Panel
Acuity G4
Portable Color Doppler Ultrasound System
S5000
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.