We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Imaging AI Can Alleviate Emergency Radiographic Workflow Constraints

By MedImaging International staff writers
Posted on 27 Mar 2023
Image: A new study supports the feasibility of full-time AI-based workflow in the ED (Photo courtesy of Pexels)
Image: A new study supports the feasibility of full-time AI-based workflow in the ED (Photo courtesy of Pexels)

Over the past few decades, emergency departments (EDs) worldwide have experienced increased workflow pressure and a corresponding rise in the demand for medical imaging around the clock, 7 days a week. However, most radiology departments struggle to provide resources for 24/7 coverage. As a result, ED physicians must interpret radiographic exams before a radiology report is available, creating new organizational challenges to ensure diagnosis accuracy and rapid report turnaround time. Artificial intelligence (AI), specifically the application of deep learning in radiological imaging, has emerged as a potential solution to improve the ED workflow. Most commercial AI solutions focus on triage and diagnosis of chest or musculoskeletal (MSK) plain radiographs. Several studies conducted in ED settings have demonstrated improved diagnosis performance by emergency physicians and/or radiology residents for detecting appendicular skeletal fractures or chest abnormalities. However, the impact of these AI solutions on the entire emergency workflow is unclear as they concentrate on individual imaging findings, body parts, or age groups.

Hence, researchers at Valenciennes General Hospital (Valenciennes, France) conducted a study to evaluate the effectiveness of a commercial deep learning-based solution in triaging adult and pediatric emergency workflows, specifically by detecting MSK and chest radiographic findings. Additionally, the study aimed to determine its impact on discrepancies between emergency physicians and radiologists. The sample consisted of 1,772 cases of patients who underwent emergency X-rays of any body part, except for the spine, skull, and abdomen. Among them, 172 cases (9.7% of the sample) had discrepancies between the initial reads from ED physicians and the final reads from the radiology department. A senior MSK-specialized radiologist reviewed and adjudicated these cases, with access to all relevant clinical records.

The team utilized commercially available AI software to triage patients based on X-rays and evaluate its performance in handling cases with discrepant readings. The results showed that the AI system had a sensitivity level comparable to that of ED physicians and achieved an accuracy rate of 90.1% on the 172 cases that had been misdiagnosed by the same readers. The researchers noted that the AI model tested in this study performed similarly to those used in previous research, but their study may have been the first to combine MSK and chest X-rays. This combination allowed for a wider range of cases to be covered in the radiographic workflow despite excluding spine, skull, and abdomen imaging. Furthermore, the AI's performance did not vary significantly across age and body-part subgroups, which is crucial for its widespread use in the clinical environment.

Related Links:
Valenciennes General Hospital 

Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Mobile X-Ray System
K4W
High-Precision QA Tool
DEXA Phantom
Digital Color Doppler Ultrasound System
MS22Plus

Channels

Nuclear Medicine

view channel
Image: The new tracer, 64Cu-NOTA-EV-F(ab′)2​, targets nectin-4, a protein strongly linked to tumor growth in both TNBC and UBC cancer types. (Wenpeng Huang et al., DOI: 10.2967/jnumed.125.270132)

PET Tracer Enables Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers

Triple-negative breast cancer (TNBC) and urothelial bladder carcinoma (UBC) are aggressive cancers often diagnosed at advanced stages, leaving limited time for effective treatment decisions.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.