We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Advanced X-Ray Imaging Technique Could Detect Early-Stage Lung Disease

By MedImaging International staff writers
Posted on 20 Feb 2023
Print article
Image: Image compares simulated results from imaging the human chest with ordinary radiography (left) and with phase-contrast radiography (Photo courtesy of KTH)
Image: Image compares simulated results from imaging the human chest with ordinary radiography (left) and with phase-contrast radiography (Photo courtesy of KTH)

Chest radiography used by clinics and hospitals plays an important role in detecting respiratory diseases like asthma or chronic obstructive pulmonary disease (COPD), but is fundamentally limited by the way in which it generates images. Now, a new research study shows that an imaging process used mainly in research labs could detect early-stage lung disease if developed for use in hospitals and clinics.

Researchers from KTH Royal Institute of Technology (Stockholm, Sweden) have used a model simulating the human chest to test how phase-contrast X-ray imaging could be used on human lungs. The team found that phase-contrast chest radiography is capable of visualizing the smallest airways - measuring less than 2mm - and their disease-related obstructions. These details fail to show up in conventional radiography, according to the researchers. Currently, research labs employ phase contrast imaging using equipment only for imaging centimeter-scale samples of soft tissue. However, the latest study demonstrates that by engineering the technical demands for clinical use, it could be possible to do more with phase-contrast X-ray imaging. Using the phase-contrast technique employed in the study, clinicians could view subtle pathological changes that otherwise cannot be seen with conventional X-ray imaging.

In conventional radiography, the X-ray beam passes through the body, where it is absorbed along the way in different tissues by varied amounts. A detector on the other side measures the intensity of the beam - or what is left of it - after it has been filtered through the body. This process, known as attenuation, is the basic mechanism for providing the contrast that makes X-ray images useful. The phase-contrast technique is a method for extracting more information from each X-ray beam because it is possible to measure differences in the waveforms of X-rays that pass through a sample. X-ray beams encounter atoms and other structures that can change the position of the wave at any point in time - the phase - in relation to a reference wave. This phase information is used to generate an image that enhances structures in the sample, which in the human chest highlights the boundaries of bronchial walls and small airways with higher contrast and better resolution. One key to the method is to move the detector further away from the patient. However, developing equipment for imaging larger samples will take time, according to the researchers.

“The chest radiography that clinics and hospitals use today plays an important role in detecting respiratory disease, but it is fundamentally limited by the way in which it generates images,” said Ilian Häggmark, a researcher at the Department of Applied Physics at KTH Royal Institute of Technology and the study’s lead author. “Phase-contrast X-ray imaging can extract more information at higher resolution using the same amount of radiation dose as in conventional radiography.”

Related Links:
KTH Royal Institute of Technology

Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
New
Straight Arm X-Ray System
Jumong Digital V Structure
New
Color Doppler Ultrasound Scanner
C50
New
Data Management System
iDMS

Print article

Channels

MRI

view channel
Image: New scan measures tumor oxygen levels in real-time to help guide treatment (Photo courtesy of ICR)

Oxygen-Enhanced MRI Technology Allows Cancer Doctors to See Inside Tumors

Since the 1950s, researchers have been aware of the difficulty in effectively treating tumors deprived of oxygen, a problem that is further exacerbated when treating them with radiotherapy.... Read more

Ultrasound

view channel
Image: New focused ultrasound is effective for treating Parkinson’s, movement disorders (Photo courtesy of Pexels)

New Focused Ultrasound Treatment Proves Effective for Parkinson’s Disease Patients

Parkinson's disease is a neurological condition characterized by the loss of dopamine neurons within the brain. While medications such as levodopa can be effective in managing this condition, some patients... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

General/Advanced Imaging

view channel
Image: Viz.ai is the first to receive FDA 510(k) clearance for an AI algorithm for abdominal aortic aneurysm (Photo courtesy of Pexels)

AI Algorithm Flags and Triages Suspected Abdominal Aortic Aneurysms from Chest CT Scans

An abdominal aortic aneurysm (AAA) denotes a bulge in the abdominal aorta, the chief artery that transfers blood from the heart to other parts of the body. If not detected and treated in time, AAA can... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.