We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

First Deep Learning AI Model Triages Patients with Chest Pain Using X-Rays

By MedImaging International staff writers
Posted on 19 Jan 2023
Print article
Researchers used AI to triage patients with chest pain (Photo courtesy of Pexels)
Researchers used AI to triage patients with chest pain (Photo courtesy of Pexels)

Acute chest pain syndrome can involve tightness, burning or other discomfort in the chest or a severe pain that spreads to the back, neck, shoulders, arms, or jaw, accompanied by shortness of breath. In the U.S., acute chest pain syndrome comprises more than seven million emergency department visits, making it among the most common complaints. However, less than 8% of such patients are diagnosed with the three major cardiovascular causes of acute chest pain syndrome - acute coronary syndrome, pulmonary embolism or aortic dissection. Nevertheless, the life-threatening nature of these conditions and low specificity of clinical tests, such as electrocardiograms and blood tests, result in significant usage of cardiovascular and pulmonary diagnostic imaging, usually ending up with negative results. With emergency departments struggling to manage rising patients and shortage of hospital beds, there is a vital need for effectively triaging patients at very low risk of these serious conditions. Now, a new study has found that artificial intelligence (AI) can help improve care for patients who turn up at the hospital emergency departments with acute chest pain.

Deep learning is an advanced type of AI that can be trained to search X-ray images for identifying patterns associated with disease. For the study, researchers at Massachusetts General Hospital (MGH, Boston, MA, USA) developed an open-source deep learning model to identify patients with acute chest pain syndrome who were at risk for 30-day acute coronary syndrome, pulmonary embolism, aortic dissection or all-cause mortality, based on a chest X-ray. The study evaluated the electronic health records of 5,750 patients (mean age 59 years, including 3,329 men) presenting with acute chest pain syndrome and who had a chest X-ray and additional cardiovascular or pulmonary imaging and/or stress tests between January 2005 and December 2015.

The researchers trained the deep-learning model on 23,005 patients to predict a 30-day composite endpoint of acute coronary syndrome, pulmonary embolism or aortic dissection and all-cause mortality based on chest X-ray images. The team found that the deep-learning tool significantly improved prediction of these adverse outcomes beyond age, sex and conventional clinical markers, like d-dimer blood tests, and also maintained its diagnostic accuracy across age, sex, ethnicity and race. Using a 99% sensitivity threshold, the model managed to defer additional testing in 14% of patients as against 2% when using a model only incorporating age, sex, and biomarker data. In the future, such an automated model could analyze chest X-rays in the background and allow clinicians to select those who stand to benefit the most from immediate medical attention, as well as help identify patients who can be discharged safely from the emergency department.

"To the best of our knowledge, our deep learning AI model is the first to utilize chest X-rays to identify individuals among acute chest pain patients who need immediate medical attention," said the study's lead author, Márton Kolossváry, M.D., Ph.D., radiology research fellow at MGH. "Analyzing the initial chest X-ray of these patients using our automated deep learning model, we were able to provide more accurate predictions regarding patient outcomes as compared to a model that uses age, sex, troponin or d-dimer information. Our results show that chest X-rays could be used to help triage chest pain patients in the emergency department."

Gold Supplier
Ultrasound Phantom
Multi-Purpose Multi-Tissue Ultrasound Phantom - Model 040GSE
Silver Supplier
Field Calibration Instrument
DAPcheck Plus
Multipurpose Radiography System
NeuVision 460
Full-Body Fan-Beam System
Primus DXA

Print article
FIME - Informa
Sun Nuclear -    Mirion



view channel
Image: An international, multi-institutional project aims to develop a radically new MRI scanner that is compact and transportable (Photo courtesy of U of M Medical School)

Compact and Portable MRI Scanner to Expand Existing Imaging Capabilities and Accessibility

Magnetic Resonance Imaging (MRI) technology which provides detailed images of the human brain is instrumental in understanding brain functions and diagnosing medical conditions. MRI has become indispensable... Read more


view channel
Image: A new study has shown the value of endoscopic ultrasound in NSCLC (Photo courtesy of Freepik)

Endoscopic Ultrasound Can Provide Value in NSCLC, Finds Study

The usefulness of confirmatory mediastinoscopy following tumor-negative results on endoscopic ultrasound still remains debatable among researchers. This procedure is often employed for mediastinal staging... Read more

Nuclear Medicine

view channel
Image: New imaging method offers potential for diagnosing, staging, and treating multiple types of cancer (Photo courtesy of SNMMI)

New Imaging Method Superior for Diagnosing Multiple Types of Cancer

Cancer-associated fibroblasts play a significant role in tumor development, migration, and progression. A subset of these fibroblasts expresses fibroblast activation protein (FAP), a protein prominently... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The global AI-enabled medical imaging solutions market is expected to reach USD 18.36 billion in 2032 (Photo courtesy of Freepik)

Global AI-Enabled Medical Imaging Solutions Market Driven by Need for Early Disease Detection

The AI-enabled medical imaging solutions market is currently in its developmental stages, following the significant role of AI-based tools in combating the COVID-19 pandemic. The pandemic saw an upswing... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.