We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Game-Changing Technology Uses Live X-Ray Images for Guiding Endovascular Surgery

By MedImaging International staff writers
Posted on 07 Jul 2022
Print article
Image: Cydar EV aids in planning and guiding endovascular surgery (Photo courtesy of Cydar Medical)
Image: Cydar EV aids in planning and guiding endovascular surgery (Photo courtesy of Cydar Medical)

Endovascular aneurysm repair (EVAR) is an alternative to open aortic surgery due to perceived advantages in patient survival, reduced post-operative complications and shorter hospital lengths of stay. Despite these potential advantages, there is still significant variability in pre-operative planning and sizing, problems associated with imprecise visualization and device positioning intra-operatively, and inconsistent patient outcomes. Now, a game-changing technology for vascular navigation aids in planning and guiding endovascular surgery and is simple to integrate with the existing imaging hardware that is already present in the hospital.

Cydar Medical’s (Cambridge, UK) Cydar EV is the first product from Cydar’s Intelligent Maps system. The patented computer vision automatically overlays the Map on the live X-ray imaging with exceptional accuracy and robustness. When guidewires and instruments deform the blood vessels, real-time imaging is used to update the Map to match the new, deformed anatomy. The result is an accurate, responsive 3D Map on the screen throughout a procedure.

During endovascular surgery, stiff guidewires often straighten, shorten and displace blood vessels. The surgeon uses grab handles positioned along virtual guide wires to adjust the shape of the 3D Map to match the real-time anatomy (non-rigid transformation). And, once adjusted, the system remembers that adjustment in 3D even when the X-ray set moves position. Toggling between the pre-operative map and the adjusted map helps the clinical team visualize how the anatomy has changed and position devices precisely. This reduces procedure length by 30-60 minutes in endovascular interventions and radiation exposure for clinical staff and patients is radically reduced, by 50% even in standard EVAR.

Cydar, in partnership with King’s College London (London, UK), has now initiated the ARIA Study: a randomized controlled trial to assess the clinical, technical and cost-effectiveness of a cloud-based, ARtificially Intelligent image fusion system in comparison to standard treatment to guide endovascular aortic aneurysm repair (ARIA). The randomized trial will enroll 340 patients in 10 sites across the UK with a clinical diagnosis of abdominal aortic or thoracoabdominal aortic aneurysm (AAA and TAAA respectively) suitable for endovascular treatment. The trial will follow patients for one year and assess the effect of Cydar EV Maps on clinical-, technical- and cost-effectiveness in comparison to standard treatment in endovascular aortic aneurysm repair, used for both standard and complex devices.

“Our central hypothesis is that digital technology - specifically cloud-computing and artificial intelligence (AI), can be used to assess and learn from large volumes of data to inform clinical decision making and has the potential to improve the predictability of individual patient outcomes and the consistency of outcomes in the NHS,” said Dr Rachel Clough, Principal Investigator of the ARIA Study and Clinical Senior Lecturer from King’s College London.

“Cydar EV Maps is a game-changing technology for vascular navigation. The ARIA study provides a unique opportunity to demonstrate the benefits like reduced procedure time and reduction to radiation exposure, although some of the more subtle benefits related to procedural quality and reduced operator fatigue may never be directly measured but are obvious as an operator,” said Dr. Simon Neequaye, Principal Investigator at the Liverpool University Hospital NHS Foundation Trust.

Related Links:
Cydar Medical 
King’s College London

Gold Supplier
SBRT Phantom with Removable Spine
E2E SBRT Phantom with Removable Spine Model 036S-CVXX-xx
New
Neuro-OR MRI System
Nexaris MR
New
Mobile Full-Body CT System
TRON
New
Ultrasound System
HERA W10 Elite

Print article

Channels

MRI

view channel
Image: New scan measures tumor oxygen levels in real-time to help guide treatment (Photo courtesy of ICR)

Oxygen-Enhanced MRI Technology Allows Cancer Doctors to See Inside Tumors

Since the 1950s, researchers have been aware of the difficulty in effectively treating tumors deprived of oxygen, a problem that is further exacerbated when treating them with radiotherapy.... Read more

Ultrasound

view channel
Image: New focused ultrasound is effective for treating Parkinson’s, movement disorders (Photo courtesy of Pexels)

New Focused Ultrasound Treatment Proves Effective for Parkinson’s Disease Patients

Parkinson's disease is a neurological condition characterized by the loss of dopamine neurons within the brain. While medications such as levodopa can be effective in managing this condition, some patients... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

General/Advanced Imaging

view channel
Image: Viz.ai is the first to receive FDA 510(k) clearance for an AI algorithm for abdominal aortic aneurysm (Photo courtesy of Pexels)

AI Algorithm Flags and Triages Suspected Abdominal Aortic Aneurysms from Chest CT Scans

An abdominal aortic aneurysm (AAA) denotes a bulge in the abdominal aorta, the chief artery that transfers blood from the heart to other parts of the body. If not detected and treated in time, AAA can... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.