We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI Tool Ensures Follow-Ups of Radiographic Findings to Prevent Diagnostic Delays

By MedImaging International staff writers
Posted on 30 Mar 2022
Print article
Image: Using AI and machine learning can improve patient outcomes (Photo courtesy of Pexels)
Image: Using AI and machine learning can improve patient outcomes (Photo courtesy of Pexels)

Medical diagnostic imaging from modalities such as X-rays, CTs and MRIs are reviewed, and findings are summarized in a radiology report which can contain recommendations for follow-up actions, such as further tests and evaluations. Due to the length and intricacy of these types of reports, up to 33% of follow-up recommendations are delayed or unintentionally overlooked, which can lead to poor patient outcomes. To solve this problem, researchers have developed a custom AI workflow to accelerate the processing of radiology reports and provide crucial patient follow-up.

The team of researchers from the Feinberg School of Medicine at Northwestern University (Evanston, IL, USA) developed an initiative to ensure reliable follow-ups of radiographic findings to prevent diagnostic and treatment delays and improve outcomes. The team developed an AI workflow based on recurrent neural networks and natural language processing (NLP) to examine and identify radiology reports with findings that require additional medical follow-up.

In a study conducted by the researchers, their custom AI workflow screened over 570,000 imaging studies in 13 months and found 29,000 - 5.1% of the total - to contain lung-related follow-up recommendations, at an average rate of 70 findings flagged per day. Results demonstrated 77.1% sensitivity, 99.5% specificity, and 90.3% accuracy for follow-up on lung findings. Nearly 5,000 interactions with physicians were generated, and over 2,400 follow-ups were completed. The researchers concluded that AI and machine learning processes improve reliability of medical imaging findings, which can lead to effective reduction and prevention of high-risk diseases.

“We built our own custom AI workflow that reads nearly every single radiology report and, through deep integration with our medical record system, provides alerts and notifications to the primary care doctor, patient, and dedicated follow-up team, to ensure that important details do not fall through the cracks,” said Mozziyar Etemadi, MD, PhD, at Northwestern University. We’re excited for the future of healthcare, artificial intelligence, and all the ways that we can continue to help our patients.”

Related Links:
Feinberg School of Medicine at Northwestern University

Print article
Sun Nuclear -    Mirion



view channel
Image: EG-740UT ultrasound endoscope combined with ARIETTA 850 provides outstanding ultrasound image quality (Photo courtesy of FUJIFILM)

Next-Gen Ultrasound Endoscope Enables Complex Diagnostic and Therapeutic Procedures

Endoscopic ultrasound is a specialist procedure performed utilizing an endoscope equipped with an ultrasonic transducer which emits and receives ultrasonic waves within the gastrointestinal tract, such... Read more

Imaging IT

view channel

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.