We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Chest X-ray AI Identifies Improper Breathing Tube Placement

By MedImaging International staff writers
Posted on 31 Jan 2022
Print article
Image: AI software identifies correct placement of breathing tubes (Photo courtesy of Qure.ai)
Image: AI software identifies correct placement of breathing tubes (Photo courtesy of Qure.ai)
An artificial intelligence (AI) algorithm improves critical care management by assessing endotracheal and tracheostomy breathing tube (BT) placement.

The Qure.ai (Mumbai, India) qXR-BT standalone image analysis software is designed to analyze and determine the position of tip of a BT relative to the carina by generating a secondary digital chest X-ray image. It then automates measurements and provides the attending physician with a report on the tube’s positional accuracy in less than one minute. This enables clinicians to identify correct positioning and determine if extra attention is required. The algorithm is vendor-agnostic, and works on both portable and stationary X-ray machines.

The chest X-rays are sent to qXR-BT by means of transmission functions within the user’s picture archiving and communication system (PACS). Upon completion of processing, qXR-BT returns results to the user’s PACS or other user specified radiology software system or database in a PDF output that contains preview images that show segmented structures, outlined with a textual report describing the structures detected. The text report is restricted to the presence or absence of the breathing tubes and the carina as detected by the software.

In addition, qXR-BT outputs a digital imaging and communications in medicine (DICOM) report, which consists of a single complete additional DICOM series for each input scan containing labeled overlays that indicate the location and extent of the segmentable structures, suitable for viewing in the PACS or radiology viewer. qXR-BT uses pre-trained convolutional neural networks (CNNs) to process the images.

“qXR-BT is expected to become a standard feature of any critical care framework, giving residents and junior clinicians more confidence in reliably measuring breathing tube placement in intubated patients,” said Prashant Warier, CEO and Founder of Qure.ai. “Especially in the wake of the COVID-19 pandemic and the need for mechanical ventilation in affected patients, the need for prompt assistance to an overburdened healthcare workforce is paramount.”

Studies have shown that up to 25% of patients intubated outside of the operating room (OR) have misplaced endotracheal tubes, which can lead to severe complications such as hyperinflation, pneumothorax, cardiac arrest, and death. Moreover, up to 45% of ICU patients, including 5-15% of COVID-19 patients, require intensive care surveillance and intubation for ventilatory support.

Related Links:

Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
DR Retrofit Kit
Radiography System
Riviera SPV
Fixed Height Radiographic Table

Print article



view channel
Image: MRI scan showing the fetus and placental compartments (Photo courtesy of WUSTL)

New MRI Method Automatically Detects Placental Health during Pregnancy

Early monitoring of the placenta can improve detection and prevention of pregnancy complications, such as preterm birth, fetal growth disorders and preeclampsia. Currently, standard MRI analysis methods... Read more


view channel
Image: The new Clarius MSK AI model speeds up diagnosis and treatment of musculoskeletal injuries (Photo courtesy of Clarius)

Handheld MSK Ultrasound Scanner Uses AI to Automatically Identify and Measure Tendons in Foot, Ankle and Knee

An artificial intelligence (AI) application for musculoskeletal (MSK) imaging that works with handheld point-of-care ultrasound devices automatically identifies, highlights, and measures tendon structures... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

General/Advanced Imaging

view channel
Image: CZT gamma detector for SPECT imaging (Photo courtesy of Kromek)

Low-Dose Molecular Breast Imaging (MBI) Could Improve Cancer Detection in Dense Breast Tissue

Traditional mammography is often less able to clearly image tumors due to the density of the breast tissue. Molecular breast imaging (MBI) technology uses a radioactive tracer that ‘lights up’ areas of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.