We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Innovative X-Ray Imaging Showing COVID-19 Vascular Damage Could Support Routine Lab Diagnostics

By MedImaging International staff writers
Posted on 23 Dec 2021
Print article
Image: Innovative X-Ray Imaging Showing COVID-19 Vascular Damage Could Support Routine Lab Diagnostics (Photo courtesy of M Reichardt, T Salditt)
Image: Innovative X-Ray Imaging Showing COVID-19 Vascular Damage Could Support Routine Lab Diagnostics (Photo courtesy of M Reichardt, T Salditt)

An innovative X-ray imaging technique that shows COVID-19 can cause vascular damage to the heart could support pathologists with routine diagnostics.

An interdisciplinary research team from the Göttingen University (Göttingen, Germany) and Hannover Medical School (Hannover, Germany) has detected significant changes in the heart muscle tissue of people who died from COVID-19. Damage to lung tissue has been the research focus in this area for some time and has now been thoroughly investigated. The current study underpins the involvement of the heart in COVID-19 at the microscopic level for the first time by imaging and analyzing the affected tissue in the three dimensions.

The scientists imaged the tissue architecture to a high resolution using synchrotron radiation – a particularly bright X-ray radiation – and displayed it three-dimensionally. To do this, they used a special X-ray microscope set up and operated by the University of Göttingen at the German Electron Synchrotron DESY. They observed clear changes at the level of the capillaries (the tiny blood vessels) in the heart muscle tissue when they examined the effects there of the severe form of COVID-19 disease.

In comparison with a healthy heart, X-ray imaging of tissues affected by severe disease, revealed a network full of splits, branches and loops which had been chaotically remodeled by the formation and splitting of new vessels. These changes are the first direct visual evidence of one of the main drivers of lung damage in COVID-19: a special kind of “intussusceptive angiogenes” (meaning new vessel formation) in the tissue. In order to visualize the capillary network, the vessels in the three-dimensional volume first had to be identified using machine learning methods. This initially required researchers to painstakingly, manually label the image data.

There is a very special feature of this study: in contrast to the vascular architecture, the required data quality could be achieved using a small X-ray source in the laboratory of the University of Göttingen. In principle, this means it could also be done in any clinic to support pathologists with routine diagnostics. In the future, the researchers want to further expand the approach of converting the characteristic tissue patterns into abstract mathematical values in order to develop automated tools for diagnostics, again by further developing laboratory X-ray imaging and validating it with data from synchrotron radiation.

"To speed up image processing, we therefore also automatically broke the tissue architecture down into its local symmetrical features and then compared them," explained Marius Reichardt, at the University of Göttingen.

"The parameters obtained from this then showed a completely different quality compared to healthy tissue, or even to diseases such as severe influenza or common myocarditis," added the leaders of the study, Professor Tim Salditt from the University of Göttingen and Professor Danny Jonigk from the Hannover Medical School.

Related Links:
Göttingen University 
Hannover Medical School 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Portable Digital X-Ray System
Acuity PDR
New
Digital Radiography System
meX+20BT
Pre-Op Planning Solution
Sectra 3D Trauma

Print article
Radcal

Channels

Radiography

view channel
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)

Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16%... Read more

MRI

view channel
Image: SubtleSYNTH creates synthetic STIR images with zero acquisition time that are interchangeable with conventionally acquired STIR images (Photo courtesy of Subtle Medical)

AI-Powered Synthetic Imaging Software to Further Redefine Speed and Quality of Accelerated MRI

The development of innovative solutions is not only redefining the landscape of artificial intelligence (AI)-based diagnostic imaging but also simplifying the ever-increasing complexity of workflows faced... Read more

Ultrasound

view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

General/Advanced Imaging

view channel
Image: HeartFlow Plaque Analysis leverages cutting-edge AI for assessment of plaque quantity and composition (Photo courtesy of HeartFlow, Inc.)

Next Gen Interactive Plaque Analysis Platform Assesses Patient Risk in Suspected Coronary Artery Disease

A first-of-its-kind plaque analysis tool to be fully integrated with FFRCT (when FFRCT is performed) provides impactful insights that enhance clinical decision-making and enable personalized patient treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The new collaborations aim to further advance AI foundation models for medical imaging (Photo courtesy of Microsoft)

Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging

Medical imaging is a critical component of healthcare, with health systems spending roughly USD 65 billion annually on imaging alone, and about 80% of all hospital and health system visits involve at least... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.