Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Algorithm for Rapid, Automated Diagnosis of COVID-19 from Chest CTs Overcomes RT-PCR Limitations

By MedImaging International staff writers
Posted on 25 Oct 2021
Image: The DA-CMIL algorithm analyzes chest CT scans to diagnose COVID-19 (Photo courtesy of Pixabay)
Image: The DA-CMIL algorithm analyzes chest CT scans to diagnose COVID-19 (Photo courtesy of Pixabay)

Scientists have developed a new algorithm for rapid, computerized diagnosis of COVID-19 that overcomes the limitations of reverse transcription polymerase chain reaction.

The new framework for accurate and interpretable automated analysis of chest CT scans was developed by researchers at the Daegu Gyeongbuk Institute of Science (DGIST; Daegu, South Korea). The current standard for diagnosis of COVID-19 through reverse transcription polymerase chain reaction (RT-PCR) is limited owing to its low sensitivity, high rate of false positives, and long testing times. This makes it difficult to identify infected patients quickly and provide them with treatment. Furthermore, there is a risk that patients will still spread the disease while waiting for the results of their diagnostic test.

Chest CT scans have emerged as a quick and effective way to diagnose the disease, but they require radiologist expertise to interpret, and sometimes the scans look similar to other kinds of lung infections, like bacterial pneumonia. Now, a team of scientists have developed a technique for the automated and accurate interpretation of chest CT scans. To build their diagnostic framework, the research team used a Machine Learning technique called “Multiple Instance Learning” (MIL). In MIL, the machine learning algorithm is “trained” using sets, or “bags,” of multiple examples called “instances.” The MIL algorithm then uses these bags to learn to label individual examples or inputs.

The research team trained their new framework, called dual attention contrastive based MIL (DA-CMIL), to differentiate between COVID and bacterial pneumonia, and found that its performance was on par to other state-of-the-art automated image analysis methods. Moreover, the DA-CMIL algorithm can leverage limited or incomplete information to efficiently train its AI system. This research extends far beyond the COVID pandemic, laying the foundation for the development of more robust and cheap diagnostic systems, which will be of particular benefit to under-developed countries or countries with otherwise limited medical and human resources.

“Our study can be viewed from both a technical and clinical perspective. First, the algorithms introduced here can be extended to similar settings with other types of medical images. Second, the ‘dual attention,’ particularly the ‘spatial attention,’ used in the model improves the interpretability of the algorithm, which will help clinicians understand how automated solutions make decisions,” explained Prof. Sang Hyun Park and Philip Chikontwe from DGIST, who led the study.

Related Links:
Daegu Gyeongbuk Institute of Science (DGIST)

Mobile X-Ray System
K4W
Ultrasound Needle Guidance System
SonoSite L25
MRI System
nanoScan MRI 3T/7T
High-Precision QA Tool
DEXA Phantom

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.