We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Siemens Healthineers

Provides customized electronic systems and advanced imaging, diagnostics, therapy, and healthcare IT solutions for th... read more Featured Products: More products

Download Mobile App




Novel CT Scanner Converts Photons to Images Directly

By MedImaging International staff writers
Posted on 14 Oct 2021
Print article
Image: NAEOTOM Alpha lung image of a post COVID19 patient (R), compared to conventional CT (L) (Photo courtesy of J. Ferda/ University Hospital Plzen)
Image: NAEOTOM Alpha lung image of a post COVID19 patient (R), compared to conventional CT (L) (Photo courtesy of J. Ferda/ University Hospital Plzen)
A new computerized tomography (CT) system transforms data from X-ray photons that pass through a patient's body directly into a detailed three-dimensional (3D) image.

Unlike standard CT detectors, which convert x-rays into images in a two-step process, the Siemens Healthineers (Erlangen, Germany) NAEOTOM Alpha system does not require an imaging sensor; instead, it counts photons directly using an active detection layer made of cadmium telluride (CdTe) crystals. The x-ray photons are therefore converted directly into a digital signal. X-ray and contrast medium dose can thus be substantially reduced and energy information is not lost, resulting in increased image contrast and sharpness.

In addition, the system uses two X-ray tubes and extremely short acquisition times. As a result, the examination of internal moving organs, such as the lungs and heart, is available with a previously unknown degree of accuracy. In order to handle and process the significantly higher data volumes, new approaches to data transfer and algorithms were developed, running on a powerful computing platform, allowing for the three dimensional (3D) images to be calculated and displayed in a matter of seconds.

“Thanks to the revolutionary images provided by photon-counting CTs, more people all over the world will benefit from precise and comprehensive examinations at low radiation and contrast dose, from oncological procedures and heart diagnostics to lung follow-up checks for respiratory illnesses,” stated Siemens Healthineers in a press release. “This adds a wealth of completely new clinically relevant information and improves image sharpness and contrast.”

CdTe has been studied as an energy detector material since 1960s. Its useful properties consist of a wide band gap (1.44 eV) with a high resistance (109 Ω), high atomic number (Cd: 48 and Te: 52), and high density (5.85 g/cm3) which provide better absorption characteristics. Because of the high absorption, CdTe can be applied for detection of energetic photons.

Related Links:
Siemens Healthineers

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
PACS Workstation
CHILI Web Viewer
New
Digital Radiography Generator
meX+20BT lite
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.