We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Agfa Radiology

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Dark-Field Chest Imaging Helps Diagnose Lung Disease

By MedImaging International staff writers
Posted on 06 Sep 2021
Print article
Image: Schematic of the prototype dark-field X-ray system (Photo courtesy of Radiology)
Image: Schematic of the prototype dark-field X-ray system (Photo courtesy of Radiology)
A new chest x-ray imaging technique can detect signals in the lungs that are undetected in standard chest x-rays, claims a new study.

Under investigation by researchers at Munich Technical University (TUM; Germany), Klinikum rechts der Isar (Munich, Germany), and Philips Research (Hamburg, Germany), x-ray dark-field imaging, unlike attenuation-based conventional radiography, utilizes the wave properties of x-rays, specifically the ultra-small-angle scattering that occurs at the material interface within the specimen. In analogy to dark-field light microscopy, dark field in this context refers to the bright appearance of scattering objects on a dark background.

Since the contrast is generated by multiple refractions on microstructures, healthy lungs have a relatively high signal due to their many air-tissue interfaces in the alveoli. Lung diseases interfering with the integrity of the alveolar structure, such as emphysema, fibrosis, and lung cancer, lead to a decrease in the dark-field signal. The researchers have developed a prototype system for humans that can be used to evaluate dark-field imaging for detection and characterization of lung diseases, with a comparably low amount of radiation exposure for the subject.

For the study, the researchers enlisted 40 healthy patients who underwent chest CT as part of their diagnostic workup, as well attenuation-based and dark-field chest radiographs simultaneously. The researchers found a correlation between total dark-field signal and the lung volume, with normal human lungs on dark-field chest x-ray imaging produced high signal, while the surrounding osseous structures had a low signal, and soft tissue produced no signal at all. In addition, no differences were found between men and women and age, weight, and height did not influence the dark-field signal. The study was published on August 24, 2021, in Radiology.

“Because of the nature of signal generation in dark-field imaging, bone structures and soft tissue generate only a minimal dark-field signal compared with lung tissue. This feature allows for a detailed depiction of lung tissue without impairment by surrounding structures,” concluded lead author Florian Gassert, PhD, of TUM, and colleagues. “These findings prove that the dark-field signal is indeed sensitive to the subject's lung condition alone and is independent from demographic factors, highlighting its potential value for diagnosis and monitoring of respiratory diseases.”

Related Links:
Munich Technical University
Klinikum rechts der Isar
Philips Research

Print article


General/Advanced Imaging

view channel
Image: 3D cardiac map created with the EnSite X EP mapping system with OT (Photo courtesy of Abbott)

New Mapping System Improves Heart Rhythm Management

Thanks to omnipolar technology (OT), a new cardiac mapping system provides 360-degree views of the heart, regardless of catheter orientation. The Abbott (Abbott Park, IL, USA) EnSite X EP with OT system... Read more

Imaging IT

view channel

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel

Global Breast Imaging Systems Market to Reach USD 1.3 Billion by 2024 Due to COVID-19-Led Patient Backlog

The global breast imaging market is expected to be driven by rising incidences of breast cancer, coupled with the huge backlog of women requiring breast cancer screening appointments due to COVID-19.... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.