We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New AI Software Accurately Detects Lung Cancers on X-Rays and Cuts Unnecessary Chest CT Scans by 30%

By MedImaging International staff writers
Posted on 06 Aug 2021
Print article
Illustration
Illustration
A recent study has shown that a deep learning-based artificial intelligence (AI) algorithm can improve the performance of readers in detecting lung cancers on chest radiographs.

According to the second joint study conducted by Massachusetts General Hospital (Boston, MA, USA) and Lunit Inc. (Seoul, Korea), AI had 28% sensitivity benefit for radiology residents, helping them properly recommend CT exams for potential lung cancer patients, and 30% specificity benefit for radiologists in lung cancer detection, reducing unnecessary CT exams. The joint research team has previously focused on validating the accuracy of AI, and proved that Lunit INSIGHT CXR, an AI software for analyzing chest X-rays, can accurately detect malignant pulmonary nodules, which can cause lung cancer. In this consecutive study, the team focused on whether AI can affect the performance of medical professionals in finding lung cancers.

For the study, 519 images of cancer-positive and cancer-negative patients were selected from the National Lung Screening Trial (NLST). Eight readers, including three radiology residents and five board-certified radiologists, participated in the reading. By comparing the analysis of the readers and Lunit INSIGHT CXR, the result showed that AI could lead to more efficient and precise diagnosis for both doctors and patients. With AI, radiology residents were able to recommend 28% more chest CT examinations for patients who may have potential risk of lung cancer. Also, radiologists recommended about 30% lesser proportion of unnecessary chest CT examinations in cancer-negative patients.

"The use of AI could help to detect pulmonary nodules accurately with chest X-rays, as well as reduce the need for unnecessary chest CT exams in some patients," said Mannudeep K. Kalra, MD, a radiologist at the MGH and Co-investigator on the study. "This finding can benefit patients by enabling them to avoid unneeded radiation exposure, and it can benefit the healthcare system by preventing certain medical costs."

"Chest X-ray is the firsthand diagnostic tool to detect lung cancer, but it has limitations as it is a compressed 2D rendering of 3D human structures," said Brandon Suh, CEO of Lunit. "An accurate analysis through Lunit INSIGHT CXR can help medical professionals provide diagnosis to patients with increased efficiency - preventing potential cancer at an early stage, while saving time and cost for those who do not need a further examination."

Related Links:

Massachusetts General Hospital
Lunit Inc.


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Compact C-Arm
Arcovis DRF-C S21
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80
New
Mobile Digital X-Ray System
SOLTUS 500

Print article
Radcal

Channels

MRI

view channel
Image: The pathways in the brain highlighted are those most affected by concussion (Photo courtesy of Benjamin Hacker et al)

AI Model Diagnoses Traumatic Brain Injury from MRI Scans With 99% Accuracy

A concussion is a type of traumatic brain injury that may lead to temporary disruptions in brain function. Occurring from incidents such as sports injuries, whiplash, or a simple bump to the head, many... Read more

Ultrasound

view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Calantic Digital Solutions is an orchestrated suite of AI radiology solutions that aims to transform radiology (Photo courtesy of Bayer)

Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions

Imaging data constitutes approximately 90% of all medical data, with the volume of such data continuously expanding, thereby significantly increasing the workload for radiologists amid existing resource limitations.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.