We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Cardiac CT Algorithm Quantifies Aortic Valve Calcium

By MedImaging International staff writers
Posted on 22 Feb 2021
Image: Cardiac CT AI can detect calcium buildup on the aortic valve (Photo courtesy of Getty Images)
Image: Cardiac CT AI can detect calcium buildup on the aortic valve (Photo courtesy of Getty Images)
A new study shows that an artificial intelligence (AI) model can automatically detect aortic valve calcium (AVC) on cardiac CT, and is superior to visual grading by radiologists.

Developed by researchers at the Catholic University of Korea (Seoul, South Korea), Yonsei University College of Medicine (Seoul, South Korea), and other institutions, the deep learning (DL)-based algorithm was initially trained and validated on 452 non-enhanced electrocardiogram-gated cardiac CT scans. It was then tested on a separate set of 137 cases, with each CT exam manually annotated by a radiologist with seven years of experience in cardiothoracic imaging, and AVC volume and Agatston scores were compared.

The results revealed that when manually measured AVC Agatston score was used as a benchmark, the accuracy of DL-measured AVC Agatston score for AVC volume grading was 97%, which was better than that of the four radiologist readers (77.8–89.9 %). The accuracy of DL algorithm for Agatston score was 92.9%. Overall, the DL model was deemed to be superior to all four radiologists for predicting severe aortic valve calcium cases. The study was published on February 6, 2021, in European Journal of Radiology.

“For observer performance testing, four radiologists determined AVC grade in two reading rounds. The diagnostic performance of DL-measured AVC volume and Agaston score for classifying severe AVC was compared with that of each reader's assessment,” explained lead author Suyon Chang, MD, of the Catholic University of Korea, and colleagues. “To validate AVC segmentation performance, the Dice coefficient [a statistic used to gauge the similarity of two samples] was calculated; after applying the DL algorithm, the Dice coefficient score was 0.807.”

The Agatston score is a semi-automated tool to calculate the extent of coronary artery calcification detected by an unenhanced low-dose CT scan, which is routinely performed in patients undergoing cardiac CT. It allows for early risk stratification as patients with a high Agatston score (over 160) have an increased risk for a major adverse cardiac event (MACE). Although it does not allow for the assessment of soft non-calcified plaques, it has shown a good correlation with contrast-enhanced CT coronary angiography.

Related Links:
Catholic University of Korea
Yonsei University College of Medicine


New
Breast Localization System
MAMMOREP LOOP
Ultrasonic Pocket Doppler
SD1
X-Ray Illuminator
X-Ray Viewbox Illuminators
New
High-Precision QA Tool
DEXA Phantom

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.