We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Low Doses of Radiation Promote Tumorigenic Cells

By MedImaging International staff writers
Posted on 30 Jul 2019
Print article
Image: p53 mutant cells (red and green) expansion in mouse esophageal tissue (Photo courtesy of Wellcome Sanger Institute).
Image: p53 mutant cells (red and green) expansion in mouse esophageal tissue (Photo courtesy of Wellcome Sanger Institute).
A new study reveals that low-dose ionizing radiation (LDIR; equivalent to three CT scans) gives cancer-capable cells a competitive advantage over normal cells.

Researchers at the University of Cambridge (United Kingdom) and Wellcome Sanger Institute (Hinxton, United Kingdom) conducted a study to examine how oxidative stress resulting from LDIR affected wild-type and p53 mutant cells present in the transgenic mouse esophagus. As the researchers speculated that altering the selective pressure on mutant cell populations may cause them to expand or contract, they also gave the mice N-Acetyl Cysteine (NAC), an antioxidant, before exposure to the same level of radiation.

The researchers found that LDIR drives wild-type cells to stop proliferating and differentiate, and that p53 mutant cells are insensitive to LDIR and outcompete wild-type cells following exposure. However, they found that combining NAC antioxidant treatment and LDIR reverses this effect, promoting wild-type cell proliferation and p53 mutant differentiation. The researchers suggest that NAC redox and radiation combined could be used to deplete p53-mutant cells from the normal esophagus by, altering the mutational landscape of an aging tissue. The study was published on July 18, 2019, in Cell Stem Cell.

“Our bodies are the set of 'Game of Clones' - a continuous battle for space between normal and mutant cells,” said lead author David Fernandez-Antoran, PhD, of the Wellcome Sanger Institute. “We show that even low doses of radiation, similar to three CT scans' worth, can weigh the odds in favor of cancer-capable mutant cells. We've uncovered an additional potential cancer risk as a result of radiation that needs to be recognized.”

“Giving mice an antioxidant before exposing them to low doses of radiation gave healthy cells the extra boost needed to fight against the mutant cells in the esophagus and make them disappear,” added study co-author Kasumi Murai, PhD, of the Wellcome Sanger Institute. “However, we don't know the effect this therapy would have in other tissues. It could help cancer-capable cells elsewhere become stronger. What we do know is that long term use of antioxidants alone is not effective in preventing cancer in people.”

p53 is a strong tumor suppressor because it lies in the midst of a signaling hub, with many different signals, such as oncogene activation, DNA damage, mitotic impairment, or oxidative stress adjusted by p53 to initiate the correct transcriptional response to eliminate cancer-prone cells from the replicative pool. In approximately 50% of human cancers p53 is mutated and in many of the remaining cases, the function of the retained wild type p53 protein is compromised.

Related Links:
University of Cambridge
Wellcome Sanger Institute

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Color Doppler Ultrasound System
KC20
Portable X-Ray Unit
AJEX240H
Under Table Shield
3 Section Double Pivot Under Table Shield

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.